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Abstract

This is a comprehensive review of the progress made during the past two decades on vortex-induced vibration (VIV)

of mostly circular cylindrical structures subjected to steady uniform flow. The critical elements of the evolution of the

ideas, theoretical insights, experimental methods, and numerical models are traced systematically; the strengths and

weaknesses of the current state of the understanding of the complex fluid/structure interaction are discussed in some

detail. Finally, some suggestions are made for further research on VIV.

Published by Elsevier Ltd.

1. Preliminary remarks

The highly specialized subject of vortex-induced vibrations (VIVs) is part of a number of disciplines, incorporating

fluid mechanics, structural mechanics, vibrations, computational fluid dynamics (CFD), acoustics, wavelet transforms,

complex demodulation analysis, statistics, and smart materials. They occur in many engineering situations, such as

bridges, stacks, transmission lines, aircraft control surfaces, offshore structures, thermowells, engines, heat exchangers,

marine cables, towed cables, drilling and production risers in petroleum production, mooring cables, moored structures,

tethered structures, buoyancy and spar hulls, pipelines, cable-laying, members of jacketed structures, and other

hydrodynamic and hydroacoustic applications. The most recent interest in long cylindrical members in water ensues

from the development of hydrocarbon resources in depths of 1000m or more. In fact, the depths reached during the

past 55 years increased as hEð1=540ÞN3:5; where h is the depth and N is the number of years, starting with N ¼ 0 in

1949.

It cannot be emphasized strongly enough that the current state of the laboratory art concerns the interaction of a

rigid body (mostly and most importantly for a circular cylinder) whose degrees of freedom have been reduced from six to

often one (i.e., transverse motion) with a three-dimensional separated flow, dominated by large-scale vortical structures.

A few exceptions in which a second degree of freedom is allowed (in the in-line direction) will be discussed later. The

restrictions imposed on the physical and numerical experiments are a measure of the complexity of the self-regulated

motion. It is not yet clear as to how the additional degrees of freedom will change some of the observations,

measurements, numerical simulations, and the contemplated applications in all ranges of Reynolds numbers

(subcritical, critical, transcritical, and supercritical).

Numerous contributions to flow-induced oscillations in general and to VIVs in particular have collectively defined the

objectives of the current VIV research and have guided the acquisition of design data through physical and numerical
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experiments, theoretical analyses, and physical insight. The ultimate objective is, of course, the understanding,

prediction, and prevention of VIVs (preferably without drag penalty), partly through the direct numerical simulations

(DNS with spectral methods) of fundamental as well as industrially significant fluid–structure interactions, by obtaining

as many Navier–Stokes (N–S) data points as possible (in the desired range of the controlling parameters) and, partly,

through the use of Reynolds-averaged Navier–Stokes equations (RANS), large eddy simulations (LES) (with improved

sub-grid scale models), vortex element methods (VEM), and their various combinations. As most aptly noted by Fischer

and Patera (1994): ‘‘Fluid dynamics is, of course, not simply the solution of the Navier–Stokes equations for a

particular configuration. Most broader problem statements, applied or fundamental, involve a vector of physical and

technology-related parameters, which must be averaged over, eliminated by optimization, or varied. In all these

examples, the typically rather large parameter space precludes a purely numerical solution; analytical, heuristic, and

experimental data, as well as intuition, must be brought to bear if the final goals are to be achieved.’’ In other words, the

numerical simulations are to be guided and inspired by ground-breaking measurements and flow visualization, mostly

with nonintrusive techniques: digital particle image velocimetry (DPIV), laser-Doppler velocimetry (LDV), time

resolved PIV, pressure-sensitive paints, and other means which will surely emerge in the years to come. These must be

augmented with large-scale benchmark experiments to guide the numerical simulations at very large Reynolds numbers.

Much progress has been made during the past decade, both numerically and experimentally, toward the

understanding of the kinematics (vice dynamics) of VIV, albeit in the low-Reynolds number regime. The fundamental

reason for this is that VIV is not a small perturbation superimposed on a mean steady motion. It is an inherently

nonlinear, self-governed or self-regulated, multi-degree-of-freedom phenomenon. It presents unsteady flow

characteristics manifested by the existence of two unsteady shear layers and large-scale structures. There is much

that is known and understood and much that remains in the empirical/descriptive realm of knowledge: What is the

dominant response frequency, the range of normalized velocity, the variation of the phase angle (by which the force

leads the displacement), and the response amplitude in the synchronization range as a function of the controlling and

influencing parameters? Industrial applications highlight our inability to predict the dynamic response of fluid–structure

interactions. They continue to require the input of the in-phase and out-of-phase components of the lift coefficients (or

the transverse force), in-line drag coefficients, correlation lengths, damping coefficients, relative roughness, shear,

waves, and currents, among other governing and influencing parameters, and thus also require the input of relatively

large safety factors. Fundamental studies as well as large-scale experiments (when these results are disseminated in the

open literature) will provide the necessary understanding for the quantification of the relationships between the response

of a structure and the governing and influencing parameters.

The difficulties experienced in describing the nature, identifying the occurrence, and predicting the characteristics of

vortex-induced oscillations of bluff bodies and galloping (to a lesser extent) have been reviewed by Parkinson (1974),

Sarpkaya (1979), Griffin and Ramberg (1982), Bearman (1984), Parkinson (1989), Pantazopoulos (1994), Sarpkaya

(1995), and in a number of books (Chen, 1987; Blevins, 1990; Naudascher and Rockwell, 1994; Sumer and Fredsøe,

1997; Au-Yang, 2001; Zdravkovich, 1997, 2003, just to name a few) and, less formally, in practically every doctoral

thesis, as part of the obligatory ‘previous studies’ section.

This review is not a flat chronology of scientific/engineering developments in VIV and does not attempt to refer to

every work that has ever been published, but one that seeks to provide physical insight. It makes no promises that are

either excessively pessimistic or unreasonably reassuring. It encourages cross-stimulation between relatively idealized

physical and numerical experiments and far more complex technological applications, often found in books and

numerous conference proceedings [see, e.g., Ziada and Staubli (2000) and Molin (2002)].

A separate section is not devoted to the discussion of flow about fixed bluff bodies. Reference is made only to specific

fixed-body observations, measurements, computations, and deductions, as needed. The flow about bluff bodies (fixed or

in motion) require and/or give rise to circumstances (influencing parameters) mostly beyond the capacity of the

experimenter to control. Some of these are the finiteness of the body or the aspect ratio (as in the case of aircraft wings

and ensuing end conditions), mobile separation points on curved surfaces, three-dimensional behavior over two-

dimensional bodies, unpredictable (or difficult to predict) spanwise correlation, nonquantifiable growth of the

disturbances in the wake, in the shear layers, and in the boundary layers (before and after separation). Furthermore,

one may need to consider the distribution of the ambient velocity and turbulence (intensity and integral length scales),

blockage ratio, surface roughness, yaw, body deformation, temperature gradients, stratification, bottom and free-

surface effects, and the impossibility (at the start of this century) to perform direct numerical simulations at Reynolds

numbers larger than about 3000.

In spite of most of these complex circumstances, the Strouhal number [St=fstD/U, after Cének (Vincent) Strouhal (a

Czech scientist), where fst is the vortex shedding frequency (or the Strouhal frequency) of a body at rest, D is the

diameter of the circular cylinder, and U is the velocity of the ambient flow] emerges as the most robust parameter. It is

followed by the mean base pressure whose instantaneous values can be as high as �0.2 and as low as �3.5,
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(Zdravkovich, 1997, p. 133). Even the crudest numerical simulations or experiments predict the Strouhal number with

sufficient accuracy. However, as noted by many researchers over the years, this is as much an advantage as it is an

obvious shortcoming because the robust parameters do not serve as unique identification cards for the integrated effects

of the individually nonquantifiable parameters. In fact, one or two parameters into which we can lump our inability to

account for all the influencing parameters do not seem to exist. This is partly because some of the influencing parameters

can become governing when they exceed certain critical values. For example, ambient turbulence may change the

transition in the wake, in the separated shear layers, in the boundary layers in the vicinity of the separation zone (leading

to possible reattachment of the flow), and in the boundary layers upstream of the mobile separation points. Thus,

ambient turbulence (possibly quantifiable in terms of its four integral length scales and eddy-dissipation rate) may

significantly affect the flow around the VIV suppression devices, and hence, may affect their performance. Then the

question naturally arises as to what are a handful of parameters that could possibly serve (albeit imperfectly) as unique

identification cards for the intended purpose. The most obvious candidates are those that exhibit large scatter in every

experiment (confining ourselves to steady flow about smooth circular cylinders).

Measurements during the past century identified the fluctuating lift in steady flow about a cylinder at rest as the most

likely quantifier of the combined effect of the influencing parameters; e.g., see Norberg (2003) and references cited

therein. Thus, having a representative time record of the lift force and its complex demodulation analysis, in addition to

the spectra and the r.m.s. (root-mean-square) value of lift, would be most desirable. As noted above, it would be equally

desirable to have a measure of the turbulence distribution, eddy-dissipation rate, and the integral length scales (x, y, z,

and t) of the ambient flow. As to the flow around the cylinder, the extension of the current understanding of the

Gerrard–Bloor transition waves and their disappearance in the range of Reynolds numbers from about ReD2� 104 to

5� 104 (Bloor, 1964; Bloor and Gerrard, 1966; Gerrard, 1978; Zdravkovich, 1997; Norberg, 2003) to unsteady flows

would be quite valuable.

Measurements similar to those noted above are equally desirable for a VIV body (see Section 3) undergoing forced or

self-excited oscillations in steady uniform or sheared flows. It appears that for such flows the fluctuating lift and the

phase angle (between the total force and the displacement) or the ‘in-phase’ and ‘out-of-phase’ components of the

transverse force could serve as suitable identification cards for the integrated effects of some of the important

parameters, e.g., to assess the effects of Reynolds number on the correlation length along the cylinder, on the wake

modes, and on the state of transition-to-turbulence in the free-shear layers emanating from a cylinder undergoing VIV

at a given A=D for a range of Re or at a given Re for a range of A=D:However desirable, the sensitivity of the transition

waves to VIV has not yet been investigated. Apparently, direct measurements will be a formidable task. Evidence, albeit

indirectly, must be gathered to identify, for example, wake and response phenomena which occur only at relatively

small Reynolds numbers.

The character of the separation, more specifically the excursions of the separation point (the mean angle plus

fluctuations), their dependence on surface conditions, the upstream turbulence, the motion of the cylinder, the

frequency spectrum of the fluctuations of the separation angle require serious investigation, particularly for comparison

with direct numerical simulations of VIV using simulated ambient turbulent flow. In summary, it is interesting to note

that a phenomenon as robust as vortex shedding gives rise to forces as unpredictable as the lift force whose power can

be fully appreciated only when one tries to eliminate VIV without excising the after body. In fact, it may be more

advantageous to predict and thereby to avoid the VIVs than to attempt to eliminate them. After all, the fluctuating lift

will always be there, with or without VIV, and the pure circular cylinder will always be the preferred shape.

2. Nomenclature

As all disciples of VIV know, the literature is rife with too many f’’s. It is not unusual to find papers in which as many

as three different symbols are used to denote one specific frequency. The reading of many papers is made difficult partly

because the subscripts do not help one to immediately recognize what they represent and partly because the same

author uses a new set of f’’s in his follow-on paper. The major parameters should be equally applicable to both forced

and self-excited oscillations in physical and numerical experiments. The use of parameters that are part of the problem

(rather than part of the solution) further complicates the matter and does not allow one to make comparisons with

numerical simulations. The advent of powerful computers has increasingly forced the formulation of the VIV problems

in mathematical and CFD terms. With these thoughts in mind, we purposely choose two- or three-letter subscripts to

enhance the instant recognition of the most important symbols:

fvac: the frequency measured in vacuum, as the only natural frequency ½fvac ¼ ð1=2pÞðk=mÞ1=2�; where k denotes the

linear spring constant and m the mass of the oscillating body. Its relation to the frequency measured in air and water

will be discussed later.
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fcom: the common frequency at which synchronization or lock-in occurs at a given velocity, i.e., fex ¼ fcom:
fex: the frequency of oscillation of a (forced or self-excited) body, meaning the excitation frequency, regardless of

whether there is lock-in or not. At lock-in fex ¼ fcom ¼ ½ð1=2pÞ½k=ðm þ DmÞ1=2�; where Dm is the added mass.

fst: the vortex shedding frequency (or the Strouhal frequency) of a body at rest. It is uniquely related to the velocity of

the flow and the characteristic size of the body through the Strouhal number St ¼ fstD=U ; where U is the steady

ambient velocity of the uniform flow.

fns: the vortex shedding frequency of a body in motion (forced or self-excited). In the lock-in range, fns becomes

increasingly smaller than fst until the lock-out.

A cylinder may be forced to oscillate at any frequency and amplitude within reason. Furthermore, one is at liberty to

change the frequency and/or the amplitude content of the oscillations. Outside the synchronization region(s) the force

experienced by the body will have both the Strouhal and body oscillation frequencies. In other words, it is understood

that in the periodic- and quasi-periodic non-lock-in regions, the two frequencies (fst and fex) will appear for awhile, and

then, at a slightly higher frequency, the synchronization will occur, leaving only one frequency, i.e., fcom ¼ fex:However,

one must hasten to note that in self-excited oscillations one should not expect perfect synchronization because of the

continuous interaction between the body and the fluctuations of added-mass, separation line, amplitude, correlation-

length, and the phase angle. This is distinct from the beating motion of a cable undergoing amplitude-modulated

oscillations by excitation at two or more frequencies wherein the vortex shedding frequency alternates between the

imposed frequency and the Strouhal frequency.

The following are identified as the most important dimensionless parameters: fcom=fst; fex=fst; fex=fvac; Vr ¼ U=fexD;
and Re ¼ UD=n where n is the kinematic viscosity . Finally, fwtr and fair will be introduced for those in

dire need of a frequency in still water or in still air. Additional parameters, controlling and influencing VIV, will be

discussed later.

3. Introduction

An all-inclusive definition of a self-exciting or, better, self-regulating ‘Bluff Body’ does not exist. It can be described

only in general terms by relying on the readers’ imagination. It is an elastic or elastically mounted fore-and-aft body of

proper mass, material damping, and shape whose cross-section facing the ambient flow at high-enough Reynolds

numbers gives rise to separated flow and hence to two shear layers, which interact with each other and bound an

unsteady wake. A body with no aft section (e.g., a D section with a flow from right to left) behaves like a bluff body but

does not present an aft profile on which the alternating lift force can act. For the purposes of this review, a body capable

of giving rise to VIV will be called a ‘VIV-Body.’

Numerous experiments have shown that a VIV-body (e.g., a circular- or square-section cylinder) with material

damping z; (determined in vacuum, especially for sharp-edged bodies) and proper reduced mass m� ¼
ðm=LÞ=ðrf pD2=4Þ; or m� ¼ rm=rf with rm ¼ ðm=LÞ=ðpD2=4Þ as the ‘mean mass density,’ may be excited by the

vortices it sheds if it is mounted on springs and exposed to a steady uniform flow. When the prevailing vortex shedding

frequency fns (not always close to fst) and the excitation frequency fex of the body approach a common frequency fcom,

the body begins to experience relatively small vortex induced oscillations. These are controlled by the spring constant,

body mass, structural damping, the density and the motion of the fluid surrounding the body, plus a number of

difficult-to-quantify influencing parameters Sp, to be called Schewe (1983) parameters (see Section 5). This is followed

by a substantial increase of the coherence length (Koopmann, 1967a; Ferguson and Parkinson, 1967; Toebes, 1969;

Ramberg and Griffin, 1976 (for oscillating cylinders); Mansy et al., 1994 (for stationary cylinders); and Novak and

Tanaka, 1975 (in smooth flow).

The vortex-excited oscillations increase the vortex strength (Davies, 1976; Atsavapranee et al., 1998) when the

amplitude in the transverse direction exceeds a threshold value of about 0.1D, (it is about 0.02D for the in-line

oscillations, see e.g., Mandini, 1961; Sainsbury and King, 1971; Dickens, 1979; Okajima et al., 2002; Sugimoto et al.,

2002, and the references cited therein). The ratio of the circulation of the nascent vortex to that of the shed vortex is

about G=G0 ¼ 0:5170:08 for the stationary cylinder (Atsavapranee et al., 1998) in agreement with those reported in the

literature (Berger and Wille, 1972). For the cylinder oscillating in the lock-in range (Vr ¼ U=fexDE4 to 8), the ratio of

the vortex strength to the total supply of circulation in one shedding period G=G0 is found to be 0.66 7 0.09. This

conforms Sarpkaya’s (1963) findings in accelerating flow about cylinders.

If the velocity U and hence the amplitude are increased (gradually) to new values, the diameter ‘seen’ by the flow (or

the spacing between the shear layers defining the virtual body) increases initially, at least for small amplitudes [see, e.g.,

Di Silvio (1969)]. The apparent ‘increase’ in D is compensated by the real increase in velocity U, thus keeping the vortex

shedding frequency nearly constant. This represents a departure from the vortex shedding frequency of the fixed
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cylinder at the new (increased) ambient flow velocity. In other words, the self-excitation begins with a real decrease in

the frequency of vortex shedding to a value close to fcom, which may be close to but not equal to that obtained from pluck

tests in still water. The vortex-shedding mode and frequency change most to match fcom. Apparently, the body motion is

dominant (but not invariant) in the sense that it accommodates somewhat the changes in vortex shedding by letting the

flow change its virtual mass and hence its frequency and acceleration as both the flow and the body arrive at a common

frequency to which the body responds with exuberance: the matching of the frequency of the prevailing dynamics of the

vortical wake with the frequency of the body oscillation.

Figs. 1 and 2 show two interesting examples. The first [Fig. 1, after Feng (1968)] was conducted in air with a single-

degree-of freedom flexible cylinder with a relatively large mass (m� ¼ rm=rair ¼ 248; z ¼ 0:00103; m�z ¼ 0:255) and
relatively large Re, varying with Vr ¼ U=fairD; from 104 to 5� 104. The second, Fig. 2, compares Feng’s data with those

obtained by Khalak and Williamson (1999, hereafter referred to as K–W) in water with a single-degree-of freedom

flexible cylinder with a relatively small mass (m� ¼ rm=rwtr ¼ 10:1; z ¼ 0:0013 and m�z ¼ 0:013) and smaller Re. In

both self-excited cases, the Reynolds number increases along the Vr axis because fair, fwtr, and D are kept constant and

only U or Re is allowed to vary as prescribed. This is unlike the forced oscillation experiments in which Re is kept

constant and the frequency of excitation is varied. K–W (1999) stated that ‘‘our studies here and in Govardhan and

Williamson (2000), for Re=3500–10 000, indicate that it is principally the parameter (m�z), which influences whether

the Upper branch (see Fig. 2) will appear or not.’’ The existing facts do not support their assumption. For steady flow

about a stationary cylinder, Basu (1986) noted that ‘‘the Re number range 1350–8000 overlaps the Re number range in

which the principal feature of the flow field is the upstream movement of transition in the free shear layer with

increasing Re number.’’ The ‘eddy formation length,’ Lf ; shrinks from Lf E1:9D at Re=5� 103 to Lf E1:1D at

Re=14� 103, and the distance to the center of the transition region (transition from a laminar to a turbulent free shear

layer) decreases from about LtED to LtE0:4D (Zdravkovich, 1997). These change the character of the free shear layers

and hence that of the vortices emanating from them. In fact, Zdravkovich (1990) was the first to suggest that the

occurrence of a jump to an Upper branch in the Meier-Windhorst experiments (1939) might be a Reynolds number

effect. Clearly, the physics of the shear layers, in general, and that of the unsteady shear layers, in particular, is very

complex. For this reason the sensitivity of the transition waves due to VIV (even for a single degree of freedom) has not

yet been directly investigated. However, the experiments of Carberry (2002) and Carberry et al. (2002) with oscillating

cylinders (with Reynolds numbers in the same range as that of K–W) provide direct evidence to show that the phase

angle j and, in particular, the lift coefficient CL; significantly increase (as much as 100%) with increasing Reynolds

number (Re=2300, 4400, and 9100) for a given A=D; and with A=D for a given Reynolds number (up to A=D values of

about 0.5).

Feng’s data (A=D and phase j versus U=fairD), at higher Reynolds numbers (104 to 5� 104), have only two branches

(Initial and Lower). The K–W (1999) data (A=D versus U=fwtrD), at lower Reynolds numbers (3500–10 000) have three

branches (Initial, Upper, and Lower), a much larger peak amplitude, and a broader synchronization range. It must be

emphasized that the horizontal axis in both figures denotes U=fairD and U=fwtrD; as well as the increasing Reynolds

number, Re ¼ UD=n: In all such free VIV experiments the frequency fair (or fwtr) and D are kept constant (along with

m� and z) and the variation of A=D with U or with the Reynolds number is plotted from a minimum to a maximum Re.

Evidently, Re may be kept constant by maintaining U, D, L=D; k, z, rf and n constant and varying only m in

rm ¼ 4m=ðpLD2Þ and hence fvac in Vr ¼ U=fvacD or in fex=fvac: Such experiments, which constitute the essence of our

on-going VIV research, will define a three-dimensional space showing A=D versus fex=fvac in each plane of constant Re.

This will enhance the understanding of the various regimes and their dependence on Reynolds number, shear layer

instability, mass ratio or rm=rwtr;material damping, aspect ratio, modes of vibration, modes of vortex shedding, abrupt

as well as gradual changes in the phase, and the degrees of freedom, along with several other parameters, to be discussed

later.

As noted by Huerre (2002), ‘‘vortex shedding is represented by a global mode, i.e., a self-sustained time-periodic state

characterized by a specific spatial structure and a frequency, which is the same throughout the flow domain.’’ The

freedom provided to a body through elastic mounting is capable of modifying the character of the global mode, i.e.,

modifying both the frequency and the spatial structure of the near wake. In any case, the body vibrates neither at fwtr
(for VIVs in water), nor at fair (for VIVs in air), nor at fst of the fixed body. Surprisingly, synchronization (sometimes

referred to as the lock-in, lock-on, vortex capture, or frequency capture) occurs not only near fst, but also over a wide

range of flow velocities. It appears that ‘lock-in’ or ‘lock-on,’ ‘vortex capture’, or ‘frequency capture’ are misnomers. In

fact, one needs to redefine VIV to make a distinction between the two distinct roles, excitation and driving, played by

vortices.

Excitation means that the vortices can and do excite the body, even when the out-of-phase component of their lift

force is relatively small (in comparison to mechanical restoring force), provided that their shedding frequency fns is close

to the prevailing frequency of the body. This is like a single-degree-of-freedom system with small (but nonzero) viscous
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damping. Thus, even weak vortices in some regions of fex=fst can excite a body to large amplitudes when the body and

the vortices arrive at a common frequency fcom, (in the region of fex/fst from about 0.5 to 0.9).

The driving ability of the vortices ensues from their particular modal dynamics to give rise to a sufficiently large out-

of-phase lift component in certain regions of fex/fst (from about 0.9 to 1.0). Thus, the excitation function of the vortices

ARTICLE IN PRESS

Fig. 1. Response and wake characteristics of a spring-mounted cylinder freely oscillating in air: m� ¼ 248; z ¼ 0:00103; m�z ¼ 0:255),
and Re (varying with Vr ¼ U=fairD) from 104 to 5� 104 (Feng, 1968).

Fig. 2. A comparison of Feng’s amplitude data (maximum A=D versus fex=fair; the lower axis), with those obtained by Khalak and

Williamson (1999) in water (the upper axis) with a single-degree-of-freedom flexible cylinder (m� ¼ 10:1; z ¼ 0:0013; m�z ¼ 0:013; and
Re varying from 3� 103–104). Feng’s data at higher Re has only two branches (Initial and Lower, as in Fig. 1). The Khalak and

Williamson data (A=D versus U=fwtrD) have three branches (Initial, Upper, and Lower), a larger peak amplitude, and a broader

synchronization range.
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is a mandatory requirement for the inception and maintenance of VIV. However, the effectiveness of their driving

function depends on a number of parameters (the range of fex/fst, Reynolds number, damping, virtual mass of the

oscillating system, and some influencing parameters).

It is clear from the foregoing that, to sustain a self-excited, self-limiting resonant response, the motion of a

freely vibrating VIV–body interferes at proper amplitudes and frequencies with the mutual interaction of the shear

layers and becomes a dominant part of the overall instability mechanism: shear-layer interaction leading to vortex

shedding, leading to alternating transverse and modulated in-line forces, leading to body motion, leading toward the

common frequencies of the excitation and response in respective directions. Thus, the interaction of the body and the

flow under proper conditions serves as the magnifier, organizer, and synchronizer of the phenomenon. It is not ever

likely to happen at a constant amplitude and frequency for the freely oscillating bodies, because of the significant

amplitude/frequency/added-mass modulations. In the words of one of the pioneers (Koopmann, 1967a) ‘‘when the wind

velocity approaches the boundaries of the resonant region, the shedding frequencies are close enough to the natural

frequency of the system to cause the system to respond in short bursts of periodic motion in the plane to the direction of

the wind. If the motion during one of these bursts is large enough to correlate the vortex wake along the span, the

cylinder jumps to a higher displacement amplitude than before and a steady-state oscillation follows. Once inside this

instability boundary, the cylinder motion controls the wake frequency, and the resulting oscillation takes place at the

natural frequency of the system.’’ In addition, ‘‘as the wind velocity is slowly increased in the resonant region, the

displacement amplitude of the cylinder steadily increases until at some definite velocity, a peak displacement amplitude

is reached.’’

Cheng and Moretti (1991) conducted a series of experiments with a circular cylinder subjected to forced transverse

vibration in a uniform cross-flow at Reynolds numbers of 1500 and 1650. They have measured the prevailing vortex

shedding frequency fns with hot-film probes, placed 4D downstream and 2.5D across from the center of the cylinder.

They have varied fex=fst (driving frequency/Strouhal frequency for a stationary cylinder) from zero to 4.5 and

the amplitude A=D from zero to 0.75. The driving frequency was monotonically increased to avoid hysteresis effects.

Fig. 3 (for A=D ¼ 0:05; Re ¼ 1500 and for A=D ¼ 0:235; Re ¼ 1500) shows representative data identifying the relevant

subharmonic, nonharmonic, and superharmonic wake frequencies. When fns is near fst; on a horizontal line given by

fns=fst ¼ 1; fns is unaffected by the excitation. However, when fns falls on a line from the origin with a slope of unity, the

vortex structure in the wake locks onto the excitation frequency (fex/fstE0.5 to 1.6). A further observation is made that

fns tends to decline with increasing excitation, possibly due to the widening of the wake. A more recent set of data

(Fig. 4) by Krishnamoorthy et al. (2001) shows the wake frequencies as a function of the oscillation frequency, vortex

shedding frequency, and remaining wake frequencies for A=D ¼ 0:22 and Re=1500. Cheng and Moretti (1991) found

that the lock-in range exhibits an onion-shaped region as shown in Fig. 5(a). At small amplitudes, this dependence is

essentially the same as that found by Koopmann (1967b) and Bublitz (1972). The center frequency of the lock-in is

slanted toward lower frequencies, and the Reynolds number has a strong effect on the upper frequency lock-in

boundary.

Vickery and Watkins (1962), Hartlen et al. (1968), Blevins and Burton (1976), and Pantazopoulos (1994) have

provided extensive data for A=D versus the lift coefficient CL for a variety of conditions. Fig. 5(b) shows that CL

increases with A=D up to A=DE0:5 and then decreases rapidly with increasing A=D:
For long, rigid or flexible structures (e.g., a cable), the phenomenon is further complicated by the fact that the

structure tends to respond at a variety of frequencies over its entire length. This, in turn, gives rise to additional and

omni-directional fluid forces whose prediction is at best approximate [see, e.g., Vikestad (1992), Vandiver and Li (1994),

Larsen and Halse (1995), Triantafyllou and Grosenbaugh (1995), Halse (1997), and the references cited therein]. When

there is no synchronization (lock-in), the driving fluid force and the structure oscillate at their own frequencies. In field

tests, a locked-in condition or a standing wave profile may not occur on long wires towed in the ocean (Alexander,

1981). There is no total spanwise correlation along very long structures placed in the ocean environment partly because

cooperating instabilities prevent such coherence, even in well-controlled laboratory experiments, and partly because

larger amplitude disturbances and omni-directional waves and currents surely prevent anything other than short

coherence lengths [an extensive table is given by Pantazopoulos (1994)]. Only the relatively short test cylinders or cables

result in well-separated modal frequencies, reducing the effects of modal interaction and enabling single-mode lock-in

to be studied in some detail (Iwan and Jones, 1987). A fitting summary of the foregoing is given by Kim et al. (1986):

‘‘Multimoded non-lock-in response did occur when the mean shedding frequency fell between natural frequencies. At

these times, three or four modes were present in the cross-flow response. The in-line response would at the same time

have several modes. Under lock-in conditions, the excitation bandwidth is very narrow. Under non-lock-in conditions,

even with very uniform flow, the excitation bandwidth broadens substantially. Under such circumstances, the lift force

is best characterized as a narrow band random process with sufficient bandwidth to excite two or more adjacent modes.

Lock-in occurs if and only if the separation of the natural frequencies of the cylinder are large compared to the
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bandwidth of vortex-induced forces.’’ Clearly, the vortex shedding, the character and timing of the vortices and the

amplification of the driving force are inextricably related. Also, self-excitation without lock-in is common but

self-regulated lock-in without self-excitation is impossible.

ARTICLE IN PRESS

Fig. 3. Variation of the shedding frequency with driving frequency of a single cylinder in uniform flow: (a) A=D ¼ 0:05; Re=1500; and

(b) A=D ¼ 0:235; Re=1500 (Cheng and Moretti, 1991).

Fig. 4. The normalized wake frequencies as a function of the normalized oscillation frequency, vortex shedding frequency, and

remaining wake frequencies for A=D ¼ 0:22 and Re=1500 (Krishnamoorthy et al., 2001).
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If a cylinder is free to oscillate in both the transverse and in-line directions, the common frequencies of the body and

the driving forces in their respective directions may lead to lock-in and the axis of the body traces the path of figure eight

(Moe and Wu, 1990; Moe et al., 1994; Sarpkaya, 1995). The figure-eight loop is caused by the considerable variation of

drag force during large amplitude oscillation. Dye (1978) tested a cantilevered cylinder in water and made the following

observations: ‘‘During the swing of a cylinder from a dead-end, the wake is tilted and the projected drag in the velocity

direction is reduced. Once the dead-end is reached, the wake realigns with the velocity and the drag force is increased.

The cylinder is pushed back along the maximum amplitude line before the wake becomes tilted again.’’ Zdravkovich

(1990) noted that ‘‘the two-degree-of-freedom response is the interaction of the streamwise synchronization at Vr ¼
U=fexDE2:5 with the transverse synchronization at VrE5’’. It is a well-known fact that [see, e.g., Sarpkaya (1979)] for

1:7oVro2:3 (the so-called first instability region) oscillations occur in the in-line direction and the vortices are shed

symmetrically. In the interval 2:8oVro3:2; (the second instability region), the vortices are shed alternately. Chen and

Jendrzejczyk (1979), working with a cantilevered tube in water, varied the reduced velocity from 1.92 to 4.92. They

found a ‘beating’ mode, typical of the pre-synchronization at Vr ¼ 4:53; as shown in Fig. 6. A single-degree-of-freedom

system is inhibited from exhibiting these intricate variations.

The mobility of the separation points is important but not necessary for synchronization (e.g., for a square or

rectangular cylinder). The separation points on a smooth stationary circular cylinder trace an arc whose magnitude

depends on Re and the frequency and amplitude of the flow oscillation (Sarpkaya and Butterworth, 1992; Sarpkaya,

ARTICLE IN PRESS

Fig. 5. (a) The lock-in range exhibits an onion-shaped region (A=D ¼ 0:22; Re=1500). The center frequency of the lock-in is slanted

towards lower frequencies (Cheng and Moretti, 1991). (b) Lift coefficient for a pivoted rod at resonance: &, L=D ¼ 48; and n,

L=D ¼ 15; Vickery and Watkins (1962); J, L=D ¼ 13:8; Hartlen et al. (1968). Curve-fit by Blevins and Burton (1976). More extensive

CL data for spring-supported cylinders and cantilevers are tabulated by Pantazopoulos (1994).
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2002). It is understood that the characteristics of turbulence of the approaching flow at each cycle depends on the

energy stored in the fluid and is not independently controllable. In general, the point of separation on a cylinder

depends not only on the pressure gradient but also on the type of unsteadiness of the ambient flow (e.g., sinusoidal),

turbulence upstream of the separation points, roughness of the surface or other excrescences, symmetry or the

asymmetry of the cylinder, taper along the rod, presence of salient edges, and the mode of vortex (or vorticity) shedding.

For a cylinder undergoing VIV, the actual instantaneous value of the wake angle is greater than that between the

ambient flow velocity and the relative fluid velocity (Mei and Currie, 1969; Raudkivi and Small, 1974) and the

oscillation of a cylinder enhances both the strength of the vortices and the excursions of the separation points. Detailed

discussions of the oscillation of bodies with salient edges may be found, for example, in Öngören and Rockwell (1988a,

b), Lotfy and Rockwell (1993), Deniz and Staubli (1997, 1998), and in the numerous references cited therein.

The lock-in also occurs at excitations that are superharmonics of the shedding frequency (see Figs. 3 and 4).

Furthermore, the lock-in regions for the odd-number superharmonics appear to differ from those for the even-number

superharmonics (Olinger and Sreenivasan, 1988; Cheng and Moretti, 1991; Rodriguez and Pruvost, 2000). This is

undoubtedly related to the nature of the shedding of the vortices.
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Fig. 6. A cantilevered tube in water with reduced velocities from 1.92 (top) to 4.92 (at the bottom). The left, middle, and right columns

show, respectively, the tube displacement, the displacement-time trace, and the power spectral density of the tube displacement. The

‘beating’ mode is typical of the pre-synchronization at Vr ¼ 4:53 (second frames from the bottom). A single-degree-of freedom system

is inhibited from exhibiting these intricate variations (Chen and Jendrzejczyk, 1979).
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In the following, we shall discuss a number of fundamental topics which are inextricably related to VIV and which are

of major importance to understanding the intricate relationships between the governing parameters and the observed or

predicted dynamics of the oscillating system.

4. Added mass and virtual mass

Added mass is one of the best known, least understood, and most confused characteristics of fluid dynamics. It exists

in all flows about bluff bodies. However, it manifests its existence, like all masses, only when it is accelerated. It depends

on the type of motion of the body or the fluid about the body and its wake, proximity of other bodies, free surface, and

time. It can be positive, it can be negative, depending on the relative direction of the drift. Its inviscid-flow values

(tabulated in books and special reports) often give the impression that they are applicable to all unsteady viscous flows

at all Reynolds numbers (Leonard and Roshko, 2001). Such an impression is so prevalent that one often encounters

general force expressions or force decompositions for viscous flows using a velocity-square-dependent drag force plus

an ideal inertial force (or frequency expressions using the mass of the body plus the ideal added mass [with Ca=(added

mass/displaced mass) = 1 for a cylinder] (Maull and Milliner, 1979; Lighthill, 1986; Leonard and Roshko, 2001). This

is in spite of the fact that Stokes (1851) showed over 150 years ago that viscosity does affect the added mass (even in

simpler flows) and that if the ideal inertial force is subtracted from the total force it still leaves some inertial force in the

so-called ‘vortex force.’ In other words, in unsteady flows, neither is the drag equal to its steady state value nor is the added

mass equal to its inviscid flow value; both are affected by viscosity and acceleration (Stokes, 1851; Basset, 1888;

Sarpkaya, 2001).

The effect of the smooth evolution of the unsteady viscous flow is expressed by Basset (1888) with a ‘history term,’

which yields exactly the same result as the viscosity-dependent terms in Stokes’ solution, but draws attention to the fact

that unsteady flow is not a juxtaposition of instantaneous steady states. Only if the body is started from rest in a fluid

otherwise at rest, the initial value of the added mass is in agreement with its ideal value because the vorticity is still

confined to a thin sheet on the boundary. Sometimes this very special case is used to ‘prove’ that the added mass

coefficient Ca for a circular cylinder is ‘always’ equal to unity (Leonard and Roshko, 2001). There is, of course, nothing

wrong with the proof, as long as it is not generalized to viscous flows for times greater than an infinitesimally small Dt:
Even though Stokes’ solution is valid only for unseparated laminar flows at small Reynolds numbers and amplitudes,

the fundamental concepts gleaned from it are universally applicable to all unsteady flows about bluff bodies and to all

21 independent components of the added mass coefficient.

The added mass has several applications besides those of the problem of acceleration from rest. As examples of such

applications, the following may be cited: correcting the measured drag coefficient in wind tunnels with diverging walls

(due to convective or both convective and local acceleration), estimating the aerodynamic forces in cases of buffeting

and flutter, calculating the periods of heaving, pitching, and rolling motions of a ship, and, in general, in calculating

forces and accelerations wherever the kinetic energy imparted to the fluid by the body is not negligible relative to the

kinetic energy of the body itself.

The added mass may be quantified in other ways besides the use of kinetic energy. Riecke (1888) surmised and,

subsequently, Sir Charles Darwin (1953) made his celebrated discovery that the added mass for a body translating

uniformly in an infinite expanse of perfect fluid equals the drift-volume times the density of the fluid. The drift mass

(similar to the drift mass in Stokes waves) is displaced permanently in the direction of motion of the body. Darwin and,

subsequently, Benjamin (1986) showed that the individual fluid particles, which are pushed aside by the

body in its forward motion, do not return to their former positions. The paths of the individual particles

are not closed curves but open-ended elasticas. Hence, besides pushing the particles aside temporarily in

passing, the cylinder also displaces the fluid particles permanently in the direction of its motion. This

permanently displaced fluid mass, enclosed between the initial and final positions of the fluid particles, is in fact the

added mass itself for the inviscid flow. The calculation of the drift mass for a separated viscous flow is exceedingly

difficult. It can be achieved only for special unsteady flows (as in the case of Stokes’ solution) or experimentally, as will

be seen later. Interestingly, the drift mass is associated with the name of the grandson of the creator of the theory of

evolution.

It follows from the foregoing that the added mass is not a concentrated mass attached to the centroid of the

body. It is distributed throughout the fluid set in motion by the body. Thus, its magnitude and centroid change

with time as the intensity and distribution of the kinetic energy of the fluid change with time. For the numerical

experiments, one does not need to know the added mass since the pressure and the viscous contributions are explicitly

incorporated into the solutions of the N–S equations. However, one does not have a larger range of Reynolds numbers

from which to choose. Furthermore, VIV is not a small perturbation superimposed on a mean steady motion. It
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presents strong unsteady flow characteristics manifested by the existence of large-scale structures for which the use of

standard turbulence models in RANS, LES, and DVM simulations is highly questionable; (see Section 13 for further

discussion).

The cycle-averaged added mass coefficient Ca ð¼ Dm=rf VbÞ; where rf is the density of fluid and Vb is a suitable

reference volume, can be negative, with far-reaching consequences for freely vibrating cylinders with low mass ratio m�

ð¼ rm=rf Þ; because

Ca=m� ¼ ðDm=mÞ ¼ Carf =rs ð1aÞ

may approach –1 and the normalized virtual mass

ðm þ DmÞ=m ¼ ð1þ Ca=m�Þ ð1bÞ

may approach zero, resulting in an oscillating cylinder with no apparent or virtual mass. It has been noted, e.g., by Feng

(1968), Bishop and Hassan (1964), and Sarpkaya (1979), among others, that the transverse force needed to excite a

cylinder to large amplitude oscillations is far greater than that exerted by vortex shedding. It was not clear in the 1970s

that the virtual mass of the body may decrease to very small values. The high-mass ratio cylinders are obviously less

affected by the added mass and its variations. In fact, the significance of several parameters stands out only at lower

mass ratios. These issues will be discussed in more detail later.

It follows from the foregoing that in separated time-dependent flows (such as VIV), the common frequency (between

the body and the vortices) at lock-in cannot remain constant throughout the synchronization range because the added

mass is a function of time, the shape of the body and its surroundings, and the type of motion and orientation of the

body through the fluid. For example, the added mass of a cylinder tracing the path of figure eight is not the same as that

of a cylinder constrained to move only in the transverse direction.

The negative added mass has been previously discussed a number of times [see, e.g., Keulegan and Carpenter

(1958), Sarpkaya (1963, 1976a, b, 1977a, 1986a, b), Vandiver (1993), Vikestad et al. (2000)] and will be discussed

again in Section 9. The negative added mass occurs mostly in the approximate range of 0.5ofex/fsto0.85

where fcom=fvac > 1; the phase angle and amplitudes are relatively large, and two pairs of vortices are shed per cycle

(to be discussed later). A similar occurrence of negative added mass in transverse vortex shedding, from a cylinder

undergoing sinusoidal oscillations in a fluid otherwise at rest, has been evaluated and discussed in great detail by

Sarpkaya (1977a).

Subsequently, it will become clear that the fluctuations of the added mass hold the key to understanding

the similarities and differences between the forced and self-excited vibrations. The fluctuations of the amplitude

of self-excited oscillations (about 710%) impose higher-order harmonics on the cyclic variation of the added

mass. This, in turn, leads to fluctuations in frequency. Their combined effect leads to further changes in amplitude,

added mass, frequency, coherence length, phase angle and so on. Clearly, if one can eliminate the modulations

superimposed on the cyclic variation of the added mass in self-excited vibrations, one will maintain its amplitude and

frequency constant and thus make the motion behave more like a forced vibration. When no two cycles are alike, one

should expect a large variety of wake states as the motion transitions from a high lift-phase state to a low lift-phase state

(sometimes called ‘low-frequency’ and ‘high-frequency’ states, even through the frequency changes only slightly

between the two states). What is of course remarkable in VIV is that a small change in frequency (say, fex=fst or fcom=fst)

may cause rather large changes in phase, in wake structure, and thus, in all the attendant consequences of VIV in or out

of lock-in.

5. Governing and influencing parameters

5.1. Parameter space

A simple dimensional analysis shows that the parameters ‘controlling’ the transverse vortex-induced oscillations of a

cylinder are the density of fluid rf ; dynamic viscosity mf ; velocity of the ambient flow U ; diameter of the cylinder D;
length of the cylinder L; spring constant k; mean roughness height of the cylinder ks; structural damping factor z,
mass of the body m (with no added mass), mean shear dU/dy, taper dD/dy, characteristic turbulence intensity et and

the integral length scales Iils of the ambient flow, and Schewe parameters Sp. Then the normalized amplitude may be
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where Resl is the Reynolds number beyond which the transition eddies in the free shear layers disappear (ReslD2� 104

for steady flow), and Recr is the critical Reynolds number beyond which the Strouhal number of the vibrating cylinder

exhibits a smooth transition to a higher value (about 0.24), unlike its steady-flow counterpart. The material damping z is
composed of grain friction, dislocation friction (rather small), and the presence of vacancies (microscopic voids). When

a material is deformed, say by a VIV event, the structure moves against itself, causing the above phenomena (one or

more depending on the structure of the material) to consume some of the energy of the motion. Thus, this gives rise to

damping. Clearly, there are no materials or structures without some damping and ‘the undamped natural frequency’

does not exist.

The shear parameter ðD=UÞðdU=dyÞ has been suggested by Vandiver (1993) after consideration of several other

possibilities. Humphries and Walker (1988) defined the shear parameter in terms of a characteristic velocity Ur (often as

the mid-span velocity) as ðD=UrÞðdU=dyÞ: It is not unique and does not define all the dynamics of shear, as noted by

Vandiver. However, the use of a larger number of shear parameters is not practicable. The current objective is to use as

few parameters as possible, experimental data obtained from rigid cylinders, and strip theory in conjunction with

approximate correlation-length models, as suggested by Triantafyllou et al. (2003). Clearly, when the shear parameter is

small (say, less than 0.01), one would expect longer correlation lengths and cells. Additional parameters such as the

number of excited modes, wave characteristics, cable properties, axial-end conditions (i.e., free or constrained to move

in the axial direction as the test pipe flexes) may have to be considered but are not included in Eq. (2). This is primarily

because of the fact that there are no programmable means to quantify some of them (or their interaction with other

parameters) at any Reynolds number. The most important facts about shear are the following:

(a) there should be no fear as far as safety is concerned (assuming no complications due to proximity effects to free-

surface, bottom- and/or other pipe lines, stratification, and the strong nonlinearity of the shear);

(b) it reduces and broadens the peak amplitude at all Reynolds numbers (from subcritical to supercritical); and

(c) at high shear parameters (e.g., 0.03), the vortex excitation range usually extends over a larger reduced-velocity

range, but at reduced peak amplitudes (Humphries and Walker, 1988). These will be discussed in Section 12 in

connection with VIV at high Reynolds numbers.

The ratio of the longitudinal integral length scale to the diameter, Iils/D gives a good insight into the effect of

turbulence. As shown by Basu (1985), the larger the Iils/D, the smaller is the interaction between the free-stream

turbulence and the cylinder boundary layer and wake. The intensity of turbulence of the ambient flow plays an

important role (within reason) in establishing the critical and supercritical regimes (with or without the help of

distributed roughness) and on the effectiveness (often degradation) of some singular VIV suppression devices at

sufficiently large Reynolds numbers (Zdravkovich, 1981).

The parameter ðD=U2
0 ÞðdU=dtÞ; with U0 as a reference ambient velocity (say, prior to the start of the acceleration or

deceleration), or in more general terms, the parameter ðDn=Unþ1ÞðdnU=dtnÞ; must be considered in assessing the

significance of the local acceleration to the convective acceleration. If it is small (Sarpkaya, 1991, 1996a) the flow may be

approximated by a juxtaposition of steady states, i.e., by flows with negligible or no history effects. If large, it is not

sufficient to define the changes in flow velocity with more or less arbitrary or qualitative measures such as ‘increasing

velocity,’ ‘progressive change of velocity,’ ‘velocity with large steps,’ or ‘decreasing velocity.’ It is a well-known fact

that, depending on its magnitude, the rate of change of velocity (plus or minus), as defined by the subject parameters,

gives rise to very interesting response characteristics, even for an isolated cylinder or cable [see, e.g., Sumer and Fredsøe

(1988), Brika and Laneville (1993), and Frédéric and Laneville (2002)]. Thus, ðD=U2
0 ÞðdU=dtÞ must be quantified during

both the acceleration and deceleration periods to assess the effect of the rate of change of velocity on the inception of

the transient states (e.g., hysteresis, intermittent jumps) in both numerical and physical VIV experiments. Sarpkaya

(1991) has shown that the rate of deceleration at the end of the acceleration period is just as important as the

acceleration period. Obviously, it is not only the rate of change of velocity that can precipitate hysteresis effects. The

rate of change of amplitude and the rate of change of frequency can produce equally interesting forms of hysteresis and

can help to explain some puzzling observations. Thus, it is necessary to consider and quantify the following additional

parameters in assessing the history effects: ð1=UÞð@A=@tÞ and ðD=UÞ2ð@fex=@tÞ: Such studies will help to resolve the
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consequences of a specific unsteady input of given type and duration on the subsequent stages of the fluid/structure

interaction.

The parameter ðD=UÞðk=mÞ1=2; or its inverse, may be written as Vr ¼ U=fvacD using the ‘natural frequency’ fvac
obtained in a vacuum because it is the only natural frequency. All other frequencies represent unsolved or partially

solved fluid/structure interaction problems of the type pioneered by Stokes (1851) and Basset (1888). Nevertheless, a

number of other reduced velocities have been used in the literature for a variety of reasons, including the need to

emphasize the importance of the variation of one or the other parameter (added mass, phase, in-phase and out-of phase

components of the lift force): Vr ¼ U=fairD; using fair; obtained from pluck tests in still air, or Vr ¼ U=fwtrD; using fwtr
obtained from pluck tests in a still test fluid (e.g., water), or Vr ¼ U=fcomD; using the actual (or common) frequency fcom
at which the lock-in occurs at a given velocity. Here a clear distinction must be made between forced and self-excited

oscillations. In forced oscillations, fcom ¼ fex ¼ 1=T (where T is the period of oscillation), and it was used by Sarpkaya

(1978) to define Vr ¼ UT=D against which the force-transfer coefficients were plotted. Thus, fcom or fex vary as the

period of oscillation is varied. Furthermore, one is at liberty to change the frequency and/or the amplitude content of

the oscillations.

5.2. Schewe parameters

All but the last parameter in Eq. (2) can be controlled (some directly, some indirectly) if one were to dedicate the time

and equipment necessary to uniquely qualify the investigation. However, the Schewe parameters Sp encompass all the

circumstances (influencing parameters) mostly beyond the capacity of the experimenter to control or to vary

systematically. They are unknowable facility-related constraints or a consequence of unsteady facility-interference

coupling. Some of these are the end conditions, parameters controlling the mobility of the separation points on curved

surfaces, three-dimensional behavior of flow over two-dimensional bodies, unpredictable (or difficult to predict/control)

spanwise correlation and its possible dependence on the forced or free nature of the vibrations, consequences of

restraining the in-line oscillations, the strong facility-and-amplitude dependence of the lift coefficient, spectral

bandwidth of lift force, shedding frequency bandwidth, nonquantifiable growth of the various disturbances in the

unsteady shear layers, effects on VIV of the distribution of the ambient velocity and turbulence across the test section,

blockage ratio, size and shape of the end plates, nonuniformity of the surface roughness, yaw, body deformation,

unwanted secondary vibrations of the body and its support system, noise, temperature gradients, and other parameters

influencing a given experimental setup. Often a number of small (presumed innocuous) assumptions in analysis and

experiments or both may make the interpretation of the results rather difficult. However, we must also heed Stokes’

(1851) words of wisdom: ‘‘Such extreme precision in unimportant matters tends, I think, only to perplex the

investigator, and prevent him from entering so readily into the spirit of an investigation.’’ Obviously, all the

dimensionless parameters cannot replace the physical insight that springs from experience and knowledge.

5.3. Mass and structural damping

Returning to the discussion of m� ½¼ rm=rf � and z versus m�z ½¼ zrm=rf �; it is noted that there is no compelling

reason to combine m� with z: In fact, Sarpkaya (1978, 1979, 1995, 1996a, 1997) and Zdravkovich (1990) suggested over

the years that they should not be combined to form a new parameter (or to eliminate an independent parameter).

Nevertheless, it has almost become a common practice, at least until recent experiments with small m� (large rf and

small rm) to combine the two parameters into a so-called ‘mass-damping’ parameter m�z (with d ¼ 2pz). This will be
discussed in more detail later in connection with the consequences of free- or self-excited oscillations where the

structural-damping-dependent response may not necessarily be a sinusoidal or stationary random process. Suffice it to

note that m� and z play very important roles in VIV. According to K–W (1999), the range of synchronization is

controlled primarily by m� (when m�z is constant), whereas the peak amplitudes are controlled principally by the

product of m�z in the range of Reynolds numbers (3.5� 103–104) encountered in their experiments. However, the

dependence of A=D on z; rf =rm; U=fvacD; fvac=fcom; the lift coefficient CL; the phase angle j; and the Reynolds number

remains to be resolved.

As to the role of the damping factor, it is rather unfortunate that no systematic experiments have been reported in

vacuum to determine z: During the second half of the past century, the word ‘damping’ has been used at various times

to mean ‘damping in vacuum’, ‘damping in still air’, ‘damping in still water’, and ‘damping in flowing test fluid’.

Furthermore, some experiments were reported without the damping factor and they were subsequently obtained from

tests on pipe or cable samples by Griffin et al. (1976). To the best of our knowledge, only Koopmann (1967a; also

reported in Griffin et al., 1976) conducted limited experiments to determine the ‘structural to the still-fluid damping’ of

an elastically supported 6-mm cylinder by oscillating it in both air and vacuum. He found that the actual structural
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contribution was only 15% of the still-air damping. Based on this experiment, Griffin et al. (1976) concluded that ‘‘the

decay of the system in still air was predominantly due to fluid resistance, and the common assumption of negligible ‘in-

air fluid loading’ was not valid.’’ The consequences of this conclusion are: (a) it is difficult to compare amplitude data

from various sources because of the potential variations in the relative contributions of fluid and structural damping to

still fluid damping zf used in the so-called mass-damping parameter mzf =rD2; and (b) at relatively small mass-damping

ratios, the comparison of the data obtained in air and water is further complicated. It is often assumed that one could

calculate the mass-damping either with the damping in air or water. This is not quite accurate because the actual

structural contribution may be only a small fraction of the still-air damping, whereas the ratio of the same structural-

plus-air damping to that brought about by the out-of-phase component of the transverse force in water is negligible. In

any case, ‘damping in still water’, like ‘added mass in still water’, is only another manifestation of an unsolved fluid-

interaction problem (i.e., the VIV itself), and it is not an independently controllable parameter [for further discussion,

see Batchelor (1967, p. 357) and Blevins (1990)]. However, for VIVs in water, the structural damping term in the

equation of motion may be negligibly small relative to the out-of-phase component of the transverse fluid force. It may

even be assumed zero in numerical simulations of VIV in dense fluids.

The concern regarding the reliability of the much-reproduced graph showing the maximum A=D versus the

so-called response parameter SG ð¼ 2p3St2zrm=rf Þ; [see, e.g., Sarpkaya (1978)] provided us with a strong

impetus to carry out a series of experiments with circular rods and tubes in air and in the vacuum chamber

of an existing electron microscope. The ends of the cantilevered (smooth and roughened) rods were rounded

and the free ends of the cantilevered tubes were fitted with semi-spherical caps. The supporting ends were

imbedded in a solid wall (a small hole allowed the complete vacuuming of the inside of the tubes). The oscillating

mass of each test element was varied by changing L. The mass was varied from 0.072 to 0.72 kg/m. The

results have conclusively shown that the ratio of the actual structural contribution to the still-air damping

varied from 0.990 to 0.995, depending on the frequency of vibration and the shape of the cantilevers. For any

one test tube, the frequencies of vibration in air and in vacuum were identical. It is on the basis of this

conclusion that we have replotted the data compiled by Griffin et al. (1976) and subsequently by Skop and

Balasubramanian (1997) in Fig. 7(a) using a linear axis for A=D: Several attempts were made in the past (Sarpkaya,

1979; Griffin and Ramberg, 1982; and Skop and Balasubramanian, 1997) to devise semi-empirical relationships or least-

squares fits to the data shown in Fig. 7(a). The shortcomings of the previous A=D versus SG relationships were that they

were mostly curve-fits [except the one proposed by Sarpkaya (1979)] and none was able to represent the data

satisfactorily at higher SG values. We have devised (in spite of our long-standing dislike for curve-fits) a new and

relatively simple curve-fit given by

A

D

� �
1

g
¼ 1:12e�1:05SG ; ð3Þ

which may also be written as ðA=DÞ=g ¼ 1:12� 0:35SG ; which conveys the unrigorous but plausible suggestion that

lnðA=D=gÞ may be, to a first order of approximation, a linear function of SG. The dimensionless mode factor g is 1.0 for

a rigid cylinder, 1.291 for a uniform pivoted rod, 1.155 for a taut string or cable, and 1.305 for a cantilevered uniform

beam. However, as pointed out by one of the reviewers, ‘‘the energy balance, e.g., between a cantilever and a rigid

cylinder on springs, may lead to another ratio between the cantilever-end-displacement amplitude and the rigid cylinder

amplitude than 1.305 since the force coefficients are strongly nonlinear functions of A=D:’’ Clearly, such nonlinearities

may account for some of the scatter in the A=D versus SG plots. Additional mode factors are tabulated in Blevins

(1990).

Figs. 7(b)–(d) show the linear–log, log–log, and log–linear plots of ðA=DÞ=g versus SG and the corresponding curve

fits using the above equation. The scatter in the data, particularly for SG less than about 0.5 (i.e., mostly for experiments

in water), is of practical as well as research interest and is not entirely due to experimental errors. It is partly due to the

use of relatively small Reynolds numbers (less than 104) for which the transition to turbulence on the free shear layers

does not move sufficiently upstream, magnification of the uncertainties in the damping factors, the end conditions (i.e.,

the restraint applied to the ends of the cables for or against axial motion), the history of the motion [e.g., whether a

particular steady flow velocity has been arrived at from a lower or higher value (Brika and Laneville, 1993)], and, most

importantly, from the particular behavior of the wake and the lift coefficient CL, leading to strongly nonlinear

dependence of the force coefficients on A=D:

5.4. fvac; fcom; and added mass

In 1995, Sarpkaya denoted fcom by fny (prevailing frequency) to include the self-excited oscillations. Moe and Wu

(1990), working with self-excited as well as forced oscillations, introduced ftrue, the frequency ‘‘at which the cylinder is

ARTICLE IN PRESS
T. Sarpkaya / Journal of Fluids and Structures 19 (2004) 389–447 403



actually vibrating.’’ Here it is denoted by fcom to cover both the forced and self-excited oscillations. It does not remain

constant throughout the synchronization range because the added mass coefficient Ca in viscous flow is not only a

function of the shape, orientation, and the physical surroundings of the body, but is also a strong function of the

resulting viscous fluid motion. In fact, fcom (either from experiments or from DNS) can be used together with fvac to

determine a posteriori the actual added mass,

Dm ¼ m½ðfvac=fexÞ
2 � 1�; ð4aÞ

or the added mass coefficient,

Ca ¼ m�½ðfvac=fexÞ
2 � 1�: ð4bÞ

Clearly, the cycle-averaged value of Dm is zero for fcom=fvac, and Dm (and Ca) are negative whenever fcom>fvac,

regardless of the viscous medium in which the synchronization occurs at the common frequency fcom. For experiments

conducted in a dense fluid (say, water), the contribution of the air to the added mass may be neglected, i.e., fairEfvac.

Then one has, for the added water mass, DmwtrEm[(fvac/fcom)
2�1]. In any case, Ca for a circular cylinder oscillating in

water is not equal to its ideal value of unity. Rewriting the above expression as

Ca=m� ¼ Dm=m ¼ ðfvac=fexÞ
2 � 1; ð4cÞ

it is seen that for a given m�, Ca is strongly dependent on the accuracy of fvac/fcom. Also, re-writing the normalized total

mass or ‘virtual mass’ as

ð1þ Ca=m�Þ ¼ ð1þ Carf =rmÞ ¼ ðfvac=fexÞ
2; ð4dÞ
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Fig. 7. Experimental measurements of the modally normalized maximum amplitude versus the response parameter SG and the

proposed curve-fit: Eq. (3). The data is tabulated in Skop and Balasubramanian (1997). The above figures show: (a) a log–log plot; (b)

a linear–log plot, (c) a log–linear plot, and (d) a linear–linear plot. In each case Eq. (3) represents the data reasonably well and makes

an unrigorous but plausible suggestion that lnðA=D=gÞ may be a linear function of SG.
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and noting that Ca may have negative as well as large positive values for a circular cylinder [see, e.g., Sarpkaya (1977b,

1978), Gopalkrishnan (1993), Vikestad et al. (2000)], one observes that the role of the added mass at high mass ratios is

minimal or that fcom approaches fvac. However, for small mass ratios, Ca becomes increasingly important as the mass

ratio m� becomes smaller, i.e., for a large (positive) Ca and small m�, the virtual mass (added mass plus m) may acquire

very large values. More importantly, however, for a relatively large negative Ca (say, �0.7) and small m� (for example,

0.6), the virtual mass becomes negative, a result that is unacceptable. Thus, one must have Ca/m
�>�1 or (m�+Ca)>0.

It is clear that bodies of very small m� will have rather large in-vacuum natural frequencies (fvac). Thus, under the

circumstances in which Ca has a large negative value and the out-of phase component of the lift force is positive (energy

transfer from the fluid to the body), the system can develop rather large amplitudes. It must be emphasized that the

positive as well as the negative values of the added mass strongly depend on A=D; as first shown by Sarpkaya (1977b,

1978), and, to a lesser extent, on the Reynolds number, provided that the Reynolds number is larger than about

1.5� 104 to 2� 104.

Eq. (4d) may also be written as

m�

m� þ Ca

¼
ðfcom=fstÞ

2

ðfvac=fstÞ
2
; ð4eÞ

which emphasizes the role of fex/fst and fvac /fst in determining the ratio of the normalized mass of the oscillating body to

its virtual mass. Only when Ca=0, one has fex=fvac. For all values of Cao0, fex>fvac, and, conversely, for all values of

Ca>0, fexofvac. Forced vibration experiments show that Ca for A=D ¼ 0:5; for example, goes through zero at fex/

fstE0.85 (for A=D ¼ 0:5; for example) and abrupt changes occur in phase and the energy transferred to the cylinder

from the fluid as fex/fst decreases, say from, fex/fstE0.88 to fex/fstE0.80. For cylinders with relatively large m�, fex=fvac
remains close to unity, the shedding mode changes from a Karman-type of vortex shedding (two single vortices per

cycle) to two pairs of vortices per cycle (to be discussed in more detail later). However, for cylinders with small m�, the
mode of vortex shedding remains essentially the same. The importance of these interesting phenomena, leading

to a strong connection between the forces, masses, VIV suppression, and mode and phase changes will become

apparent later.

6. Linearized equations of the self-excited motion and their limitations

The equation of motion for a body of single-degree-of-freedom with linear springs and damping has been known for

a long time and constitutes one of the classic examples in most vibration texts. Briefly, it may be written as

mÿ þ c ’y þ ky ¼ 1
2

CyrDLU2; ð5aÞ

in which m is the mass of the cylinder, c the linear material damping coefficient, k the linear spring constant,

rf the density of fluid, D and L are the diameter and length of the cylinder, U is the ‘steady’ ambient

velocity, and Cy ½¼ F ðtÞ=1
2
rU2D� is the strongly amplitude-dependent lift coefficient. The amplitude of the

exciting force, denoted by CL, and the phase angle j (between the total force and the displacement) embody the

essence of all that is needed for the dynamics of VIV. Introducing yr=y/A and following Parkinson (1974), Eq. (5a) may

be reduced to

ÿr þ 2z ’yr þ yr ¼ ðz=SGÞðfcom=fvacÞ
2Cy; ð5bÞ

in which time is normalized by ovact. This is a nonlinear equation because of the strong dependence of

Cy on the amplitude of the cylinder displacement. However, at lock-in, the displacement y and the transverse

fluid-force coefficient Cy are usually expressed, to an unknown order of approximation, by sinusoidal functions

(known as the harmonic model approximation) in which the force leads the displacement (the horse leads the cart) by a

phase angle j,

yr ¼ ðA=DÞ sin 2pfcomt; ð6Þ

Cy ¼ CL sinð2pfcomt þ jÞ ð7aÞ

or

Cy ¼ ðCL cos jÞ sinð2pfcomtÞ þ ðCL sin jÞ cosð2pfcomtÞ: ð7bÞ

The displacement and acceleration are zero at y=0 (the mean position) and the absolute values of the displacement and

acceleration are maximum at y=A. The cylinder decelerates as it moves toward larger |y| and accelerates as it moves
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towards smaller |y| values. It is a well-known fact that in steady flow the angle that the shear layer separates from a

cylinder is affected by the Reynolds number. A shear layer on a body undergoing VIV is expected to be strongly

affected by whether the relative flow past the cylinder is accelerating or decelerating. Thus, the variations of the total

relative velocity about the cylinder and the alternating nature of the accelerations and decelerations of the cylinder

could lead to highly complex excursions of the separation points and shear layer transitions. Krishnamoorthy et al.

(2001) observed that ‘‘both shear layers develop abrupt double roll-ups as the cylinder accelerates from the top-dead-

center to its mean position.’’

The substitution of Eqs. (6) and (7) into Eq. (5b) yields the following well-known expressions for the frequency and

amplitude in terms of rm/rf rather than m�:

fcom

fvac
¼ 1�

CL

2p3
D

A

rf

rm

U

fvacD

� �2

cos j

" #�1=2

ð8Þ

and

A

D
¼

1

2
CL sin j

St2

SG

U

fvacD

� �2
fvac

fcom
ð9aÞ

or

A

D
¼

1

2
CL sin j

1

2p3z

rf

rm

1þ Ca

rf

rm

� �1=2
U

fvacD

� �2

: ð9bÞ

Thus, the linear equations of motion show that A=D is dependent on CL, the phase angle j, z, rf/rm, (U/fvacD),

and (1+Carf/rm)
1/2 or fvac/fcom. There is no mathematically derivable direct dependence on such parameter

combinations as (m�+CA)z, where CA is the potential flow added mass coefficient (CA=1.0 for a circular cylinder), or

on yet another parameter f�=[(m�+CA)/(m
�+CEA)]

1/2 where ‘‘CEA is an ‘effective’ added-mass coefficient that

includes an apparent effect due to the total transverse fluid force in phase with the body acceleration,’’ introduced by

Khalak and Williamson (1999), (in our notation, CEA=Ca). Furthermore, numerical solutions of the ‘exact’ equations

of motion do not need, do not depend on, and do not give rise to such arbitrary parameters as f�=[(m�+CA)/

(m�+CEA)]
1/2.

Equating A=D from Eqs. (8) and (9a), one has the tangent of the phase angle,

tan j ¼
2zfvacfcom

f 2
vac � f 2

com

: ð10Þ

Recalling that Ca=m�[(fvac/fcom)
2�1], one has for fcomofvac, i.e., for a positive added mass, tanj>0 and for fcom>

fvac, i.e., for a negative added mass, tanjo0. Thus, at fcom=fvac, the phase angle shifts by 180	. Conversely, a 180	

phase shift corresponds to a change in the sign of the added mass from positive to negative or vice versa, depending on

the direction of the change of fcom. It must be emphasized that any change in Ca, and thus in phase, is not sudden. The

reorganization of the wake occurs over a finite frequency range.

The foregoing analysis shows that A=D is a function of CL (see Fig. 5b), Ca depends on A=D and U/fvacD, fcom/fvac
varies with U/fvacD, and j depends on z and fcom/fvac, and they all depend on the Reynolds number. Nevertheless, one

can reasonably conclude by inserting once rf=rair and then rf=rwtr in Eqs. (8) and (9b) that:

(a) (fcom/fvac)air approaches unity because the second term in the bracket in Eq. (8) becomes negligibly small and A=D

in Eq. (9a) may be simplified to

A

D
¼

1

2

St2

SG

U

fvacD

� �2

CL sin j; ð11Þ

(b) (fcom/fvac)wtr becomes smaller than one;

(c) (A/gD)wtr becomes larger than (A/gD)air with decreasing SG (see Fig. 7 and Eqs. (4) and (9b));

(d) The suppression of (A/gD)wtr is more difficult compared to (A/gD)air partly because of the much larger rf (for

water) leading to a much smaller SG (=2p3St2zrm/rf), particularly for small mean mass densities, and partly because of

a number of other issues such as the variation of CL, the width of the lock-in range, and the coherence length with A=D;
discussed in connection with Figs. 5(a) and (b). Thus, one needs suppression devices which could successfully reduce CL

in water for amplitude ratios smaller than about 0.5, without excessive drag penalty. As appropriately noted by Bearman

and Brankovic (2002), ‘‘it is more difficult to suppress any resulting VIV in water compared to air because of the much

smaller m�z.’’ Evidently, the entire suppression issue is relatively more involved than that posed by SG or m�z alone.
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The foregoing analysis is predicated on the assumption that the frequency and the amplitude of the oscillations

remain constant, as assumed in Eqs. (6) and (7) for the displacement and force. Oddly enough, this is more so for the

‘forced’ oscillations than for the free oscillations. As noted by Schewe (1983), in connection with stationary cylinders in

steady flow, ‘‘The time functions of the lift, drag and amplitude look like sine functions, which are randomly modulated

in amplitude and frequency. The instantaneous total force acting on the cylinder is then the result of the more or less

cooperative behavior of these individual subsystems, which differ slightly from each other in frequency and amplitude.’’

Cylinders undergoing VIV exhibit similar nonstationary, nonergodic, randomly modulated amplitudes. As noted by

Moe et al. (1994), nearly harmonic oscillations occur for self-excited vibrations in the lock-in region. The displacement

spectra have narrow bandwidths, yet 10% variation in peak amplitudes is common and the associated force amplitudes

are strongly irregular. Therefore, the average lift force for the self-excited case cannot be assumed equal to the lift force

for the forced-vibration case, even though the average motion amplitudes for both cases may be equal. The assumption

that the displacement and force must depend respectively only on sinot and sin(ot+j) renders the problem more

manageable but conveniently avoids the issue as far as the nature of the random fluctuations of lift, drag, and amplitude

are concerned. In fact, it might be said that the analysis of free oscillations on the basis of a single frequency as in

Eqs. (5b), (6), and (7), without the inclusion of higher order harmonics, may be unwarranted.

7. Unsteady force decomposition

The lift coefficient in Eqs. (5a) or (7a) or its in-phase component with the cylinder velocity must be determined

analytically, numerically or experimentally if any progress is to be made toward solving industrially significant VIV

problems. It is much easier and more reliable to quantify the lift coefficient using forced vibrations (because of the

constancy of the desired amplitude and frequency) in spite of the fundamental differences between the self-excited and

forced oscillations. It is a well-known fact that the force-transfer coefficients used in designs (say, that of risers) do not

come from the free VIV tests or from numerical simulations. They come from forced oscillation experiments [e.g.,

Sarpkaya (1977a, b, 1986a, 1995), Moe and Wu (1990), Gopalkrishnan (1993), just to name a few].

7.1. Drag and inertia coefficients and phase angle

Sarpkaya (1978), using y=�A sinocomt and U(t)=�Um cosocomt, expressed CL as

CL ¼ Cmh sin ocomt � Cdh cos ocomt; ð12aÞ

where ocom=2pfcom and the coefficients Cmh and Cdh are the Fourier averages, over many cycles of oscillation (about

100), of the transverse component of the normalized force acting on the cylinder. They are assumed to depend on A=D

and the Reynolds number. Eq. (12a) may also be written as

CL ¼ �Ca sin ocomt þ Cd cos ocomt; ð12bÞ

using yr=(A/D) sin 2pfcomt as in Eq. (6) and U(t)/Um=cosocomt. Here, Ca is the added mass coefficient and Cd is the

drag coefficient. If the body were at rest and the fluid oscillated about it, Ca needs to be replaced by 1+Ca to account

for the effect of the imposed pressure gradient. The genesis of the above equations is the so-called ‘‘Morison–O’Brien–

Johnson–Schaaf’’ equation or the ‘‘MOJS’’ equation (1950), according to which the time-dependent force exerted on a

body moving with the velocity U(t) in a fluid otherwise at rest is assumed to be a linear sum of an acceleration-

dependent inertial force and a velocity-square-dependent drag force, i.e.,

F ðtÞ ¼
1

2
rCdDjU jU þ rCa

pD2

4

dU

dt
: ð13Þ

The coefficients of the two forces are determined experimentally by measuring the force and calculating their Fourier or

least-squares averages (Sarpkaya, 1976a, b, 1977a, 1986a, b, 1987). More intricate formulations of the time-dependent

force at the price of complexity turned out to be arguably not beneficial (Sarpkaya, 1981, 1985, 2000, 2001).

For a cylinder oscillating sinusoidally with U=Um sinocomt, the first term on the right-hand side of the above

equation has often been linearized (provided the circumstances be such that the nonlinearity of the square of the velocity

may be neglected) to yield Eq. (12b) (Sarpkaya, 1978). Rewriting Eq. (7b),

Cy ¼ ðCL cos jÞ sinð2pfcomtÞ þ ðCL sin jÞ cosð2pfcomtÞ; ð7b-RÞ

and comparing it with Eq. (12b), one has

Ca ¼ �CL cos j and Cd ¼ CL sin j; ð14Þ
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from which one can find CL=(Ca
2+Cd

2)1/2 and the phase angle j=tan�1(�Cd/Ca). The maximum of CL, from Eq. (12b),

occurs at ym=tan�1(�Ca/Cd)=p/2�j. In other words, the following holds true for the linear approximation of the

sinusoidal VIV, regardless of whether it is obtained from the assumptions leading to the sinusoidal displacement and a

sinusoidal force with a phase of j or from a linearization of the MOJS equation,

j ¼ tan�1 �
Cd

Ca

� �
¼

p
2
� tan�1 �

Ca

Cd

� �
¼

p
2
� ym; ð15Þ

or, combining it with Eq. (10), one has

j ¼ tan�1 �
Cd

Ca

� �
¼ tan�1 2zfvacfcom

f 2
vac � f 2

com

� �
: ð16Þ

As far as forced oscillations are concerned, the linearized version of Eq. (13) is no more or no less empirical than the

Eq. (7a). However, for the self-excited vibrations, the original nonlinearized form of the MOJS equation is certainly

more representative of the prevailing state of the flow, particularly at industrially significant Reynolds numbers.

The linearization represents a considerable simplification for both the ocean and the laboratory environment. The

transverse as well as the in-line force for more complex oscillations (e.g., beating phenomena, oscillations with irregular

or modulated amplitudes) cannot be represented by a two-coefficient model and certainly cannot be analyzed on a

cycle-by-cycle basis in search of a new phenomenon. One needs to determine the Fourier averages of the said

coefficients, deduced from many cycles (say, 100) to obtain representative results. There will always be considerable

uncertainty stemming from the ambient flow environment and the Schewe parameters. This, in fact, is one of the

fundamental reasons for the difficulty of dealing with fluid-structure interactions in a nonlaboratory environment and

with self-excited vibrations in both nature and in the laboratory environment.

If the motion contains amplitude—as well as frequency—modulated fluctuations (as in the case of free

or self-excited oscillations), one must perform a complex demodulation analysis to capture the basic

features of the data [see, e.g., Bloomfield (2000)]. In such cases, the assumption of a mean frequency and/or amplitude

may lead to less accurate force components and phase angles. One need not be reminded that the single most important

parameter in VIV is j and its dependence on all the parameters given by Eq. (2). To emphasize the point, we rewrite

Eq. (2) as

j ¼ F

z;
rf UD

mf

;
L

D
;

4m

rf pLD2
;
D

U

k

m

� �1=2

;Resl ;

Recr;
D

U2
0

dU

dt
;
D

U

dU

dy
;
dD

dy
; et;

ks

D
;
Iils

D
; Sp:

8>>><
>>>:

ð17Þ

Clearly, j is destined to exhibit large scatter, particularly in tests with self-excited oscillations and in numerical

simulations employing, for example, LES. An orbicular leaf attached to a tree responds with exuberance to droplets of

uniform shape, weight, and frequency falling on it from a pipette when the frequency and the phase angle relative to the

motion of the leaf are set precisely. When the phase angle is a few degrees off, the leaf comes to a dead stop even if the

frequency is kept the same.

7.2. Lighthill’s force decomposition

Lighthill (1986) asserted that the viscous drag force and the inviscid inertia force acting on a bluff body subjected to

unsteady motion in a viscous fluid otherwise at rest operate independently. Accordingly, he expressed the MOJS

equation, Eq. (13), as

F ¼ C�
a rðdU=dtÞVb þ 1

2
rApU2Cd ; ð18Þ

where Ca
� is the ideal inviscid flow value of the added mass coefficient. It is obvious from the form of

Eq. (18) that Lighthill (1986) meant by ‘‘viscous drag force’’ a force, which contains no inertial force

due to the motion of vortices. Thus, his second term on the right-hand side of Eq. (18) is only a velocity-square-

dependent drag force. A few years earlier, Maull and Milliner (1979) made a similar suggestion to simplify the

use of the Morison equation, but without the arguments of Lighthill (1986). Sarpkaya (2001) has shown

conclusively that the above assertion is invalid. This is rather obvious from the fact that the subtraction of the ideal

inertial force from the total force leaves behind a vortex-motion force or, just simply, a vortex force which necessarily

contains both a ‘velocity-square-dependent’ force and an ‘acceleration-dependent’ inertial force. In other words, the

remainder of the total force (the second term) cannot be expressed as a velocity-square-dependent force alone (with a

simple drag coefficient). Lighthill (1986) stated that ‘‘I want to argue that, as we necessarily move to more refined
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methods of estimation, we can appropriately continue to separate hydrodynamic loadings (as Morison’s

equation does) into vortex-flow forces and potential-flow forces ... as Taylor (1928a) did y .’’ This

created the impression that the ‘vortex-flow forces’ and ‘viscous drag forces’ were one and the same: a

velocity-square-dependent drag force, devoid of inertial forces. A careful reading of Taylor’s papers (1928a, b)

shows that they deal with the use of distributed sources and sinks to calculate the added mass of airfoils

immersed in an inviscid fluid and the determination of the effect of convective acceleration on bodies

immersed in converging or diverging wind/water tunnels (the so-called horizontal buoyancy) in steady

inviscid flow. They do not deal with unsteady flows, vortex motion, or ‘‘separation of hydrodynamic

loading into vortex-flow forces and potential-flow forces’’ contrary to Lighthill’s (1986) assertions.

However, we must emphasize that there is nothing wrong in separating the ideal inertial force from the

total force (as done in the industry for many years) as long as one recognizes the fact that the remainder of the force

is still comprised of both drag and inertial forces, which require a number of additional terms for their correct

representation in a model equation.

Stokes’ 153-year old solution (Stokes, 1851) of oscillating viscous flow about a sphere is given by

F ðtÞ ¼
1

2
þ

9

2
ðpbÞ�1=2

� �
rpD3

6

dU

dt
þ 1þ

1

2
ðpbÞ1=2

� �
ð3pmDUÞ: ð19aÞ

Clearly, both the inertial and drag components of the force are modified by the effect of viscosity [so called, Basset’s

(1888) history terms] as seen from the following version of the above equation:

F ðtÞ �
1

2
þ
rpD3

6

dU

dt

� �
¼

9

2
ðpbÞ�1=2rpD3

6

dU

dt
þ 1þ

1

2
ðpbÞ1=2

� �
ð3pmDUÞ: ð19bÞ

7.3. Total force less ideal inertial force

The subtraction, from the total force, of an ‘ideal mass force’ (generated by the displacement of the fluid as the body

accelerates) leaves on the right-hand side of the equation a b-dependent in-phase inertial force and a b-dependent out-of-

phase drag force.

Together these two are the unsteady flow forces [the so-called ‘vortex-forces’ in separated time-dependent flows

(Sarpkaya, 1996a, 2001)]. The history of the motion (particularly in hysteresis) manifests itself in both the in-phase and

the out-of-phase components of the force.

In vortex-induced oscillations, the phenomenon is far more intricate. However, the extraction of the ideal inertial

force from the total force Govardhan and Williamson (2000), hereafter referred to as G–W] necessarily leads to a net

force still comprised of an acceleration-dependent inertial force and a velocity- or velocity-square-dependent drag force,

as in Eqs. (13) and (19b).

Let us now reconsider Eq. (7b) in a slightly different form and denote the phase angle between the total force and

displacement as jtotal, for reasons which will become clear shortly,

CLðtÞ ¼ ½CL cos jtotal� sinð2pfcomtÞ þ ½CL sin jtotal� cosð2pfcomtÞ ð20aÞ

and separate the in-phase (inertia) component of the force into two parts: the ideal inertial force IF (to be quantified

later), plus the remainder,

½CLvortex cos jvortex þ IF � sinð2pfcomtÞ: ð20bÞ

Now, inserting Eq. (20b) into Eq. (20a), one has

CLðtÞ ¼ ½CLvortex cos jvortex þ IF � sinð2pfcomtÞ þ ½CL sin jtotal� cosð2pfcomtÞ: ð20cÞ

Obviously, the first term in the first bracket is modified by the addition of the word ‘vortex’ in the subscripts in order to

compensate for the second term so that the total (in phase) inertial force remains unchanged, i.e., only the forces, that

are in phase with each other, can be subtracted from each other. The out-of-phase component of the force (CL sinjtotal)

does not change. However, both CL and sinjtotal must individually change in order to render the out-of-phase

component of CL equal to CLvortex and CL sin jtotal ¼ CLvortex sinjvortex. This leads to

½CLðtÞ � IF sinð2pfcomtÞ� ¼ CLvortex cos jvortex sinð2pfcomtÞ þ CLvortex sin jvortex cosð2pfcomtÞ; ð20dÞ

where the amplitude of the ideal inertial force is given by

IF ¼ 2p3St2
f 2
com

f 2
st

� �
A

D
: ð20eÞ
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Furthermore, it is seen that tanjtotal and tanjvortex are related by

tan jtotal

tan jvortex

¼ 1�
IF

Ca

; ð20fÞ

which shows that large differences may occur between the two phase angles when strong changes occur in Ca and/or

A=D due to rapid changes in vortex shedding, hysteresis, or intermittent jumps at some particular values of fcom/fst (e.g.,

between the Lower and Upper branches in jtotal or between the Upper and Initial branches in jvortex) for a given St at

relatively small Reynolds numbers. The foregoing is predicated on the assumption that the frequency and amplitude

modulations are negligible to allow one to make precise determinations of the subject phase angles. In self-excited

oscillations, this is not always the case. This will be discussed in more detail later.

8. Limitations of forced and free vibrations

8.1. General discussion

The motivation of this section is not to assess how the forced oscillations can be used to predict the free VIVs under

otherwise similar conditions, but rather to examine in depth their similarities, differences, and limitations. Obviously,

the two cases are not identical: one is driven internally by the wake at an average frequency fex (dictated by the past and

the prevailing state of the motion and the periodic forcing arising from it) as the Reynolds number increases with

increasing U in U/fwtrD as in K–W (1999) and G–W (2000). Furthermore, some or all of the Reynolds numbers in the

synchronization range may not necessarily be larger than Resl, making the response dependent on both Re (i.e., on the

state of the shear layers) and U/fwtrD. Forced oscillations are driven externally at an exact frequency fex at a desired

amplitude A=D and Reynolds number throughout the range of fex/fst or Vr=U/fexD. One is limited largely by the lock-

in regions and the other to a large range of reduced velocities and amplitudes. Forced oscillations help to regularize and

idealize almost every aspect of the vortex-induced oscillations, leading to nearly pure sinusoidal oscillations, forces, and

almost repeatable wake states. Thus, one has an exact knowledge of the frequency of motion and of the magnitude and

shape of the displacement (and hence, of the velocity and acceleration). Even then, however, one expects and finds

differences in the structure of the wake from cycle to cycle, for example due to changes in the motion of the separation

points and the coherence length.

The bodies undergoing VIV in nature are neither constrained (except by their supports) nor forced to

oscillate at a constant amplitude and frequency. Their reduced amplitude (A=D) and Reynolds number

vary with the reduced velocity and the accurate determination of their individual effects on the remaining

governing parameters in general and on the lock-in phenomenon in particular becomes difficult particularly

when some or all Re values are below Resl. The extraction and interpretation of reliable force information

from free oscillations are more difficult. This is particularly true when the body responds very rapidly to

changes in reduced velocity as in Feng’s (1968) or in Brika and Laneville’s (1993) experiments in certain ranges

of their reduced velocity Vrb=(Vr/2p)=U/(2pfexD). Thus, neither the instantaneous center of gravity nor

the cycle-averaged value of the virtual mass, nor the force acting on the body, nor the acceleration of

the body is known, except for the fact that the virtual mass, the force, and the acceleration are nonlinearly

related. This is analogous to deducing information from F=(virtual mass)� (acceleration) without knowing

any one of the three elements of the most fundamental equation of motion. In spite of this, it should be

the ultimate objective of the VIV research to predict, to the extent possible, the kinematics and dynamics

of self-excited vibrations from forced vibration (physical/numerical) experiments and, equally important, the

dynamics of forced oscillations (say, e.g., drag, lift, and inertia coefficients and the phase angle) from the

physical/numerical experiments with self-excited oscillations. However, perfect synchronization is not ‘perfect’

and 10% variation in peak amplitudes of force (in both forced and self-excited oscillations) is quite common,

as shown in Fig. 8 (Moe and Wu, 1990). Griffin (1972) carried out both self-excited and sinusoidally forced oscillations

under nearly similar conditions. At the same average amplitude, the free oscillations exhibited amplitude (and, most

certainly, phase) modulations, similar to those noted above. The average velocities in the wake were quite similar, but

their instantaneous values exhibited the expected discrepancies. The numerical simulations of Al-Jamal and Dalton

(2003) and Blackburn et al. (2001), among many others, have shown that the computed lift (after sufficient transition

time) exhibits ‘quite large variability’ as in Fig. 9, and the wave form exhibits interesting ‘double peaks’ as in Fig. 10,

‘‘likely to be related to the shedding of four concentrated regions of vorticity per motion cycle,’’ as noted by Blackburn

et al. (2001).
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8.2. Amplitude and phase modulations

The immediate ramifications of the facts noted above are that (a) the response amplitude given by

Eq. (9a) or (9b) becomes increasingly more approximate as the amplitude and phase modulations increase; (b)

the second-order fluctuations affect the frequency ratio (Eq. (8)) and the amplitude (Eq. (9a)) differently, and (c)

the appearance of m� and z as m�z in Eq. (9a) does not mean that m�z is a universal parameter of VIV for all

ranges of m� and z for a number of reasons. The parameter m�z is based on a set of linear equations

whereas the oscillations are affected by the start-up effects, history effects, and transitional second-order

changes, separation excursions, correlation length fluctuations, pressure distribution, to name just a few

of the governing and influencing parameters. The imposed amplitude and frequency drive the forced

oscillations whereas the free oscillations are driven by the past and the prevailing state of the motion and

the forces arising from it. This is particularly significant when transient phenomena take place at certain frequencies in

both the idealized experiments (at low Reynolds numbers) and in practical applications (pipes and cables) at larger

Reynolds numbers undergoing both in-line and transverse vibrations.

The relative amplitude of the forced sinusoidal oscillations can be accurately represented by

yr ¼ ðA=DÞ sin 2pfext; ð6-RÞ

where fex is the driving frequency. However, the representation of the fluid-force coefficient Cy by a linearized equation,

such as

Cy ¼ ðCL cos jÞ sinð2pfextÞ þ ðCL sin jÞ cosð2pfextÞ; ð7b-RÞ

may be valid only for small A=D values for the following reasons. The so-called Keulegan–Carpenter

number K ¼ 2pA=D for a cylinder subjected to oscillations transverse to a uniform stream varies in the

approximate range of 1.25oKo10. Extensive investigations of sinusoidal flow about a cylinder (Sarpkaya,

1976a, 1977a, b, 1986a, b) have shown that the drag and inertia coefficients in the MOJS equation vary
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Fig. 8. Force (full line) and displacement (broken line) time series: (a) self-excited, in-line spring-supported, Vr ¼ 5:93; (b) forced, in-
line spring-supported, Vr ¼ 5:93: The sample data show that perfect synchronization is not ‘perfect’ and 10% variation in peak

amplitudes of force (in both forced and self-excited oscillations) is quite common (Moe and Wu, 1990).
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with both Re and K. In the range of K values noted above, the variation of the added mass coefficient is

particularly strong for K larger than about 7. This is primarily due to the changes in the structure of the

wake on both sides of the cylinder. In the case of a circular cylinder subjected to transverse oscillations

there are additional complications and major differences: the direction of the ambient flow relative to
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Fig. 9. Example showing that the computed lift (after sufficient transition time t ¼ 2Ut=D) exhibits ‘‘quite large variability’’ (all for

m� ¼ 7:85; fvac ¼ 0:14): (a) damping z ¼ 0:0; (b) z ¼ 0:02; (c) z ¼ 0:10 (Al-Jamal and Dalton, 2002).
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the cylinder changes with time, the oscillations are in the cross-flow direction but the ambient flow is

normal to it and the wakes of the two cases are not even similar. However, one can easily surmise that both the

added mass and velocity-square-dependent lift force are even more complex than that for the pure sinusoidal

oscillations in a fluid otherwise at rest. This has already been shown by Sarpkaya (1978) in his forced oscillation

experiments. The larger the amplitude of VIV oscillations, the more nonlinear is the dependence of the lift and inertial

forces on A/D, particularly at mode changes, phase jumps, hysteresis, and intermittent switching. In other words,

Eqs. (6) and (7b) must be replaced by a nonlinear force equation to enhance its accuracy if it is to be compared with self-

excited vibrations. The only such equation (other than the addition of higher order terms with either arbitrary or

Fourier-averaged coefficients) is Morison’s equation. It is easy to show that it reduces to (Keulegan and Carpenter,

1958; Sarpkaya, 1977a)

Cy ¼ Cd

3p
8

jcos otj cos ot � Ca sin ot: ð21aÞ

The maximum force occurs at ot=ym, where

ym ¼ sin�1 �
4

3p
Ca

Cd

� �
: ð21bÞ

It is interesting to note that |Cd/Ca| must be larger than 4/3p. Using Eq. (21b) one can determine the phase angle with

respect to displacement, velocity, or acceleration.

As noted above, the relative amplitude of self-excited vibrations is not constant and the motion is not a pure

sinusoidal oscillation. Separation points, pressure distributions and correlation lengths are history dependent and thus

the instantaneous states in forced and self-excited cases at the same amplitude and average frequency do not necessarily

give rise to instantaneous similar correlation lengths, pressure distributions and sectional or total forces. The character

of every cycle is determined by the cumulative effect of the prevailing conditions (Basset effect) and by the Schewe

parameters. Every change in amplitude indicates a change in the lift force, which in turn, is a reflection of a mismatch

between the vortex shedding frequency and the body frequency, leading to fluctuations in the shedding of vorticity. One

can find better force and amplitude representations by accounting for the additional harmonics or by resigning to the

use of time-averaged values. At present, there are no analytical models that would suggest the form of the nonlinearity

likely to be contributing to the dynamics of VIV. In recent years new methods of multivariate and especially spacio-

temporal time series analyses have been developed. Thus, the amplitude may be represented with sufficient accuracy
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Fig. 10. Time-series of lift (top), its instantaneous magnitude (middle) and phase angle (bottom) in relation to cross-flow displacement

for the three-dimensional simulations (Re=1250, StVr ¼ 1:33) (Blackburn et al., 2001).
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through the use of one of these approximate methods such as (a) the harmonic analysis; (b) proper orthogonal

decomposition (POD, also known as the Karhunen–Loève decomposition); (c) force-state mapping (Masri and

Caughey, 1979; Meskell et al., 2001); or (d) complex demodulation analysis in dealing with nonexact periodic series

(Bloomfield, 2000). The POD is an optimal expansion scheme to discretize a random process (Loève, 1977) and has

been used, e.g., by Cazemier (1997), Lenarts et al. (2001), Sarkar and Pa.ıdoussis (2003), and Cohen et al. (2003).

Evangelinos and Karniadakis (1999) have successfully used the complex demodulation analysis in connection with their

work on the VIV of a cable. If none of the above methods is used, it is suggested that Fourier-averaged force-transfer

coefficients be calculated using sufficiently large number of oscillations (experimental or numerical) and incorporated

into Eq. (12) to create a model to predict the force as a function of time. Such a force equation should produce, for

similar normalized parameters, the lift and phase, or the drag and the added-mass coefficients obtained from the forced

oscillations.

The question is not whether the two fairly idealized VIVs (forced and free, with minimum Re larger than

about 15 000) are exactly alike or not, but rather whether they are sufficiently alike to extract reliable

information from each for purposes of comparison toward a physics-based understanding of VIV. The final decision

regarding the applicability of the fixed-body data to the prediction of the characteristics of a freely oscillating body will

depend on many more experiments (forced and self-excited) with other rigid and flexible bodies at much higher

Reynolds numbers.

The comparison of the flow kinematics (often of DPIV pictures at low Re) of two in-line constrained cylinders (one

self-excited, one forced to oscillate) under highly idealized circumstances (in-line constrained rigid cylinder, small L=D;
better correlation, small Re, uniform flow with relatively small turbulence) is far from sufficient to draw scientific and/

or industrially significant conclusions regarding the dynamic similarity of self-excited and forced oscillations. The

unconstrained rigid or elastic bodies (long cables or pipes with varying degrees of bending and support stiffness) often

subjected to omni-directional waves, currents, and shear at much higher Reynolds numbers present highly complex

problems. What may be true for the physics of the simplest cases may not at all hold true for the more realistic

circumstances.

9. Experiments with forced oscillations

9.1. A brief summary of the existing contributions

Following the pioneering experiments of Bishop and Hassan (1964) with cylinders subjected to forced oscillations in

uniform flow, Protos et al. (1968), Toebes (1969), Jones et al. (1969), Mercier (1973), Stansby (1976), Sarpkaya (1978,

1979), Chen and Jendrzejczyk (1979), Staubli (1983), Moe and Wu (1990), Cheng and Moretti (1991), Gopalkrishnan

(1993), Moe et al. (1994), Sarpkaya (1995), Carberry (2002), and Carberry et al. (2002) conducted experiments using

forced oscillations.

Bishop and Hassan (1964) reported their lift and drag forces in arbitrary units and assumed the added mass

coefficient to be equal to its ideal value of Ca=1. This invalidated their force measurements and, for the same reason,

those of Protos et al. (1968) and Toebes (1969). However, Protos et al. and Toebes were the first to point out the

importance of the phase angle j in the determination of the direction of the power transfer between the fluid and the

cylinder. Bishop and Hassan have identified two critical frequencies (fcom/fst=0.86 and 0.95 at Re=6000 and

A=D ¼ 0:25) delineating a hysteresis loop. The phase angle j (between the displacement and the excitation) started with

a negative value and increased gradually to a positive value of about 90	 at the lower critical frequency. Then the

motion became unstable and the phase angle jumped from 90	 to about 180	, with no intermediate values. However,

when fcom/fst was increased, from the lower to higher values, the branch of jD170	 was followed until the upper critical

frequency was reached. Then the phase angle changed abruptly by 180	. In other words, there was no gradual phase

change in the interval 0.86o fcom/fsto 0.95. Many years later, Krishnamoorthy et al. (2001) noted, ‘‘... the phase switch

does not occur abruptly. Instead, over several cycles of cylinder oscillations, both ‘in-phase’ and ‘out-of-phase’ vortex

shedding occurs during the transition.’’ Our high-speed photographic recording (at a rate of 500 frames/s) of the

forced oscillations of smooth as well as roughened cylinders have shown that the phase changes do in fact occur over

several cycles.

Jones et al. (1969) forced a large cylinder to vibrate at small amplitudes, at very large Re=1.9� 107. Their lift

coefficients were very similar to those reported at relatively low Reynolds numbers. Mercier (1973) conducted forced in-

line and transverse oscillations in the range 4000 o Re o 8000 and reported a variety of figures for mean and

oscillatory drag coefficients as well as drag and inertia components of the lift force, as functions of the reduced velocity

and A=D: Stansby (1976) conducted forced vibration experiments with a circular cylinder, and he too observed that the
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phase angle jumped about 180	 in the lock-in range for decreasing fcom/fst and increasing A=D: The switch occurred at

fcom/fst=0.86 (as in the case of Bishop and Hassan) at Re=3600 and A=D ¼ 0:25: Stansby associated his observations

with the wake width being greater for fcom/fst below critical, to being smaller for fcom/fst above critical. This reduced the

question to what makes the relative wake width vary. Bearman and Currie (1979), working with a circular cylinder at

much higher Reynolds numbers (Re=2.4� 104), reported no evidence of hysteretic behavior.

Carberry (2002) and Carberry et al. (2002) subjected circular cylinders to controlled sinusoidal oscillations transverse

to a uniform flow at Re o 104. They observed many of the well-known characteristics of the forces and transitions as

the frequency of oscillation passes through the Strouhal frequency. They have called them a ‘transition’ between the

‘‘low- and high-frequency states’’ although the frequency changes only slightly during the said transition. As noted

earlier, it is a ‘‘phase transition’’ where the ‘jump’ in phase could indeed be very large. Carberry (2002), in an attempt to

compare her data with those obtained previously, defined a ‘‘transition frequency’’ ft at which sharp changes occur in

the phase and amplitude of the lift force. Obviously, ft differed from one data set to another. Thus, using fex/ft rather

than fex/fst, she was able to bring into closer agreement the phase (jlift) and CL data of Mercier (1973), Sarpkaya (1978),

Staubli (1983), Gopalkrishnan (1993), and Carberry (2002), as shown in Fig. 11. All the data have been obtained at

subcritical Reynolds numbers, ranging from as low as 2300 to as high as 6� 104, over the past 24 years. The Re values

of Carberry (2002) are within the said range (Re=2300, 4400, and 9100), but her data exhibit notable differences from

the mean of the others even in a plot pulled closer by fex/ft. This appears to be partly due to the fact that her Reynolds

numbers are considerably smaller than that required for the transition in the free shear layers to mature and partly due

to the fact that a ‘transition frequency’ ft does not uniquely characterize a VIV event. Fig. 12 shows CLvortex data of

Carberry et al. (2002) for a range of A=D at Re=2300 and for a range of Re (2300–9100) at A=D ¼ 0:5 as a function of

fex/ft. Their additional data at A=D ¼ 0:25; 0.40, and 0.60 depict equally large variations with Re and A=D probably

partly due to amplitude and frequency modulations, and the increase of the instability in the free shear layers with

increasing Re, and partly due to the effects of a number of secondary parameters noted earlier. Carberry et al. (2002)

have also noted that small differences in the motion of the cylinder can result in significant changes in the energy

transfer.

Sarpkaya (1977a, b, 1978) carried out systematic measurements of forces acting on a rigid cylinder vibrating

sinusoidally transverse to a uniform water flow (Re=6� 103 to 3.5� 104) and expressed the transverse-force coefficient

in a manner consistent with the force decomposition discussed earlier (see Eqs. (14–15)). For an ambient velocity of

U=Um cosocomt, it was reduced to

Ca ¼ �CL cos j and Cd ¼ CL sin j ð14-RÞ

and to

j ¼ tan�1ð�Cd=CaÞ ¼ tan�1 2z
fvacfcom

f 2
vac � f 2

com

� �
: ð16-RÞ
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Fig. 11. (a) and (b) show the phase angle ðjliftÞ and the lift coefficient CL in terms of fex=ftr: Apparently, the data for Re less than about

104�1.5� 104 differ most from the rest even in a plot pulled together by fex=ft: This suggests that the average position of the transition

from a disturbed-laminar state to a turbulent state has not yet fully migrated upstream in the free shear layers (Carberry, 2000).
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Sarpkaya (1978) presented the inertia or added-mass coefficient (component of lift in phase with the cylinder

acceleration) and drag coefficient (component of lift in phase with the cylinder velocity) for various values of A=D in the

range 6� 103oReo 3.5� 104. He then used the data in a linear equation of motion to predict the amplitudes of

oscillation of an elastically mounted self-excited cylinder. His predictions were in good agreement with the experimental

data of Griffin and Koopmann (1977).

Staubli (1983) measured the fluid forces acting on a transversely oscillating circular cylinder in a towing tank.

His work was essentially similar to that of Sarpkaya (1978), but at a higher Reynolds number (ReE60 000).

Staubli predicted the vibrations of a freely oscillating cylinder [by Feng (1968)] using the results of his

measurements. In general, he found good agreement with the experimental data. He has shown that hysteresis

effects, which are observed in experiments with elastically mounted cylinders of certain damping and mass ratios,

are caused by the nonlinear relation between the fluid force and the amplitude of oscillation. Staubli did not present

drag and inertia coefficients. However, they can be derived from his lift force and phase data and vice versa as shown in

the present paper.

Moe and Wu (1990) have undertaken a major effort to conduct both free and forced oscillation experiments

using the same apparatus. The cylinders were suspended such that they were (a) free in both the in-line and

transverse directions; (b) clamped in the in-line direction, free in the transverse direction; (c) clamped in-line, forced in

the transverse direction; and (d) free in the in-line direction and forced to vibrate in the transverse direction. Moe and

Wu (1990) have obtained a number of important results: (i) the use of the true or prevailing oscillation frequency (our

fcom) results in very similar lock-in ranges for both the forced and free oscillations; (ii) large self-excited cross-flow

motions occur for a wider range of the reduced velocity if the cylinders are free to execute figure-eight motions than if

they are restrained in the in-line direction; (iii) the lift force is irregular for all test cases, and most so for the self-excited

case; and (iv) relatively large random effects exist in the lift force of the cylinder undergoing self-excited or forced

vibrations as seen in Figs. 9(a) and (b). These effects are stronger for the in-line fixed cases than for the in-line spring-

supported ones.

Gopalkrishnan (1993) carried out forced oscillation experiments in a towing tank (Re=104) and produced extensive

plots of the lift force and phase. He measured the reaction force only at one end of the test cylinder (suspended at both

ends) but performed the data reduction by assuming a uniformly distributed load. Thus, the effects of three-

dimensional conditions (e.g., the spanwise variations of the flow) in a nominally two-dimensional flow were not

accounted for. His data, as well as those obtained by Sarpkaya (1978) and Moe and Wu (1990), were compared by

Sarpkaya (1995) by plotting the in-phase and out-of-phase components of the lift force (for A=D ¼ 0:25; 0.50, and 0.75)

as a function of VrSt=(U/Dfex)(fstD/U)=fst/fex in order to account for the variations in Strouhal number (and the

Reynolds number) among the three experiments. The level of agreement between the three sets of data suggested to

Blevins (1999) that the drag and inertia coefficients obtained by Mercier (1973), Sarpkaya (1978), Staubli (1983), Wu

(1989), Deep Oil Technology (1992), and Gopalkrishnan (1993) may be combined in a single database and represented

with semi-empirical correlations for design purposes only.
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Fig. 12. Carberry et al. (2002) data show that CL vortex increases with A=D for a given Re, and with Re for a given A=D in the range of

Reynolds numbers from 2300 to 9100.
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The test cylinders in the experiments noted above were constrained to remain in the transverse plane.

As noted earlier, Moe and Wu (1990) carried out additional, but limited, tests with cylinders not-constrained

in the in-line direction (using suitable springs). Interestingly enough, the random variations in the lift force

turned out to be smaller for the in-line-unrestrained cases than for the in-line-restrained cases. Clearly,

the data obtained with in-line-restrained rigid cylinders may be of limited use under certain circumstances,

particularly when the natural frequency of the cylinder in the in-line direction is made or becomes increasingly larger

than that in the transverse direction. Thus, the exploration of the biharmonic motion of a cylinder elastically supported

in both directions becomes an issue even more important than that of an in-line restrained cylinder subjected to

amplitude-modulated beating motions. Gopalkrishnan et al. (1992) subjected rigid cylinders, restrained in the in-line

direction, to amplitude-modulated (beating) motions and expressed the transverse force in terms of an ‘‘equivalent lift

coefficient.’’

9.2. Detailed discussion of more recent experiments

Sarpkaya (2004) repeated his 1978 experiments in a new water tunnel (with no free surface) at seven Reynolds

numbers (2.5� 103, 7.5� 103, 12.5� 103, 15� 103, 20� 103 and 45� 103) with two 50-mm diameter cylinders with

L=D ¼ 7 and A=D ¼ 0:50 (using a fast data acquisition system and an ‘infinitely better’ computer rather than several

hundred punch cards for every data point as during the 1975–1978 period). One of the cylinders was polished to make it

as smooth as possible and the other was specially modified for the exploration of VIV suppression. The velocity at the

test section (356mm� 510mm) ranged from 0.04 to 0.92m/s and the ambient turbulence at the lowest Re was 0.8% and

at the highest Re was 1.2%. Experiments for each Reynolds number were repeated at different weeks. The objectives of

the rather ambitious program were: (a) to obtain reliable data at Reynolds numbers higher than that encountered in the

1978 experiments; and, more importantly, (b) to determine the dependence of the key quantifiable parameters (phase

angle and the in-phase and out-of phase components of the transverse force) on the Reynolds number at discrete values

of Re in the range 2.5� 103o Reo 45� 103 using the same facility, experimental procedures, and test cylinder. Only

the most important findings will be described in this review. The results and their detailed discussion will appear

elsewhere (Sarpkaya, 2004).

We will first describe the results for Re=45� 103. The mean lines passing through the new Ca; Cd ; and phase data for

A=D ¼ 0:5 for Re=45� 103 are shown in Figs. 13 and 14 as a function of fex/fst and Vr, respectively. The Ca; Cd ; and j
data obtained at different weeks fell within respective error bands of 4%. These figures substantiate many of the

observations made earlier by Sarpkaya (1978, 1979, 1995) and others since then [e.g., Staubli (1983), Gopalkrishnan

(1993)]. Evidently, important variations occur in both Ca and Cd in the range 0.80 o fex/fsto 0.90 and the positive

values of Cd are the regions of primary and secondary synchronizations, which signify power transfer from the fluid to

the cylinder.

The phase angle decreases rapidly from a value of about 180	 to little above zero at fex/fstE1.5. In

addition, important variations occur in all three parameters outside the primary fex/fst range noted above.

Fig. 14 shows the same data as a function of Vr=U/Dfex where, for a given U and D, the forcing frequency

decreases along the Vr axis but the Reynolds number remains constant at Re=45� 103. The data reveal that Ca

decreases sharply from about 3.9 to about �0.6, as the reduced velocity increases from VrE3.5 to 5.90. Ca then rises

slowly to about �0.4 as Vr increases toward 10. This phenomenon occurs for a wide range of A=D values with different

Ca values (Sarpkaya, 1978). The changes in Ca may be interpreted in a number of interesting ways using Eqs. (3d) or

(3e), i.e., (1+Ca/m
�)=(fvac/fex)

2 or the virtual mass=(m�+Ca)=m�(fvac/fex)
2. The decrease of Ca from large positive

values toward zero, as Vr approaches 5.85, shows that fex is rising toward fvac (i.e., the virtual mass of the body is

decreasing). At fvac/fex=1, Ca=0, VrE5.85 and the virtual mass of the body becomes equal to the actual mass of the

body. Subsequently, Ca becomes negative and acquires its minimum value of about �0.6 (for A=D ¼ 0:5) at about
VrE5.90. At that point, the body’s apparent mass is the smallest it will ever be and fex is the largest it will ever get for

this particular amplitude (A=D ¼ 0:5). In short, fex increases up to about Vr=5.90 and then decreases gradually while

remaining larger than fvac.

Fig. 14 also shows that the drag coefficient Cd (the normalized out-of-phase component of the total instantaneous

transverse force) rises sharply for Vr values from about 5 to 5.90, i.e., the drag is in phase with the direction of motion of

the cylinder and helps to magnify the oscillations (positive energy transfer). It is positive also in the ranges 3.2 o Vr o
4.4 and 5.90 o Vr o 10. The foregoing substantiates the fact already noted by Sarpkaya (1978) that ‘‘synchronization

or lock-in is manifested by a rapid decrease in inertial force and a rapid increase in the absolute value of the drag force’’

and that ‘‘lock-in is a phase transformer.’’ Sarpkaya (1978) further noted that ‘‘The data also show that the use of an

inertia or added-mass coefficient equal to unity, as determined by oscillating the cylinder in a fluid otherwise at rest, is

not correct for modeling the vortex-induced oscillations.’’ Obviously, this fact has nothing to do with the shifting of the
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Fig. 13. Inertia and drag coefficients (or the in-phase and out-of phase components of the lift force) and the phase angle as a function

of fex=fst (A=D ¼ 0:50; Re=45000, L=D ¼ 7; smooth cylinder) (from author’s experiments). Perfect synchronization is seen to occur at

fex=fstE0:85; accompanied by rapid changes in phase and force-transfer coefficients. (Sarpkaya, 2004).

Fig. 14. Inertia and drag coefficients (or the in-phase and out-of phase components of the lift force) and the phase angle as a function

of Vr ¼ U=fexD (A=D ¼ 0:50; Re=45 000, L=D ¼ 7; smooth cylinder) (from author’s experiments). Perfect synchronization is seen to

occur at Vr ¼ 5:80–5.85, accompanied by rapid changes in phase and force-transfer coefficients (same as Fig. 13 except that the

horizontal axis is changed to Vr).
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ideal added mass to the left side of the equation of motion and dealing only with the so-called ‘vortex-induced forces,’ as

long as the actual added mass (Dm), and not its ideal value, is used in calculating the prevailing body frequency, i.e.,

fex=(1/2p)(k/(m+Dm)1/2. Clearly, high m� values diminish the contribution of Ca/m
� or Dm=m to the virtual mass.

Conversely, very small values of m� magnify the contribution of Ca/m
� (for positive values of Ca) and lead to lock-in at

very small excitation frequencies, as per Eq. (3d). Furthermore, the range of synchronization increases because the

variation of fvac/fex with respect to Ca/m
� decreases according to (1+Ca/m

�)�1/2 and fvac/fex loses its ability to delineate

sharper frequency boundaries.

It has been noted a number of times that the added mass coefficient Ca can be negative with far-reaching

consequences for freely vibrating cylinders. At first this appears paradoxical. However, further thought shows that

Ca is the cycle-averaged value of the sum of the masses transported during the periods of acceleration (cylinder

moving toward the mean position, i.e., y-0) and deceleration (cylinder moving toward its maximum

amplitude, i.e., y-|A|). Thus, (cycle-averaged) negative added mass means that the drift mass during the deceleration

periods is larger than that during the acceleration periods. The basic difference between the kinematics of the two cases

is that, during the deceleration periods, the velocity vector relative to the cylinder is oriented toward the axis of the

wake, whereas during the periods of acceleration the said net velocity is toward the shear layer from which the cylinder

is coming. Undoubtedly, this is a consequence of the particular behavior of the wake vortices during the said periods

and the forces they exert on the cylinder (awaiting a Direct Numerical Simulation of VIV at high Reynolds numbers,

say Re>15 000). Similar ‘‘negative’’ added mass has been previously discussed by Keulegan and Carpenter (1958) and

by Sarpkaya (1976a, b) in connection with the sinusoidal motion of flow relative to smooth and roughened cylinders.

Subsequently, it has been discussed by numerous investigators [see, e.g., Vandiver (1993), Gopalkrishnan (1993),

Vikestad et al. (2000)]. According to Vandiver (1993), ‘‘a negative added mass simply reflects the sign of the fluid force

on the cylinder being in phase with the acceleration.’’ In self-excited oscillations, the occurrence of amplitude and

frequency modulations is accompanied by corresponding changes in the added mass. For example, a change of D(fvac/
fcom) leads to a change of D(Ca/m

�)=2(fvac/fcom)D(fvac/fcom), which could be very large when fcom is relatively small as in

the case of small m�.
The second objective of our experiments (Sarpkaya, 2004) was to determine the dependence of the phase

angle and the in-phase and out-of phase components of the transverse force on the Reynolds number at

seven discrete values of Re in the range 2.5� 103o Reo 45� 103, using the same facility, experimental

procedures, and test cylinder. This was prompted by the well-known fact that the Gerrard–Bloor transition

waves in the free shear layers disappear in the range of Reynolds numbers from about ReC2� 104 to 5� 104

in steady flow about a stationary cylinder. Bloor (1964) measured the frequency of transition waves within

1.3� 103o Reo 4.5� 104 [see also Bloor and Gerrard (1966), Gerrard (1978), Wei and Smith (1986),

Ünal and Rockwell (1988), Ahmed and Wagner (2003), Zdravkovich (1997, 2003), Norberg (2003)].

When the Reynolds number reaches about 2� 104, the near wake becomes highly three dimensional, and

the eddy formation length does not move closer to the separation point. Unfortunately, there are no

comparable direct observations and measurements with cylinders subjected to VIV. Thus, the critical value of Resl,

at which the cycle-averaged eddy formation length remains nearly stationary, is not yet known. Furthermore, direct

measurements to gather such data appear to be prohibitively difficult. Owing to these facts, we have chosen the three

parameters noted above (Ca, Cd, j) to deduce indirect information about the effect of the evolution of the unsteady free

shear layers, knowing fully well that the variations observed from one Re to another at the same A=D are not

exclusively due to the variations in the shear layers. However, it is not too difficult to assume that the shear layers will

certainly have a predominant effect on what happens to the generation of vorticity, shedding of vortices, phase angle

and the force components.

The data obtained at different weeks at each Reynolds number were compared with each other as well as with those

at consecutive Reynolds numbers (2.5� 103, 7.5� 103, 12.5� 103, 15� 103, 20� 103, and 45� 103, all with A=D ¼ 0:5).
For smaller values of Re (2.5� 103 and 7.5� 103), the differences between the force coefficients were indeed as large as

those encountered by Carberry et al. (2002) with A=D ¼ 0:5 and Re = 2.3� 103, 4.4� 103, and 9.1� 103, as shown in

Fig. 12. However, when the Reynolds number was increased to 12.5� 103, the variations in data relative to

Re=7.5� 103 became smaller but certainly larger than the usual scatter in the data. The phase angle exhibited the

largest difference, particularly for fex/fst> 0.9. When Re was increased to 15� 103 and then to 20� 103, the differences

between the tracing parameters reduced to the level of the scatter observed in each experiment. The comparison of the

data for Re=20� 103 and Re=45� 103 confirmed the conclusion that all three ‘identification parameters’ stabilize and

do not materially depend on the Reynolds number, at least in the range 15� 103o Reo 45� 103. It is tempting to

assume that this conclusion will remain true for all Re in the lower subcritical range of Reynolds numbers for smooth

uniform flows about smooth circular cylinders, at least for A=D ¼ 0:5: Obviously, experiments at larger A=D values and

Reynolds numbers are desirable.
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10. The wake and VIV

The most appropriate place for a brief review of the structures in the wake of a body undergoing VIV at relatively low

Reynolds numbers appeared to be between the discussions of the forced and self-excited oscillations. Enormous

progress in computers, and in flow visualization and measurement devices, led to the description and classification of

the wake states of the simplest bodies, albeit at relatively small Reynolds numbers, and reduced the fundamental

questions of VIV from: (a) under what circumstances do the various types of VIV occur; and (b) what are the

controlling and influencing parameters in all ranges of m�z; to: (i) why do the vortices in the wake shed as two vortex

pairs per cycle under certain conditions and as two single vortices in a cycle (as Karman vortices) under other

circumstances; and (ii) what is the role of vortices in the cause and effect relationship between their motion, hysteresis,

and the controlling and influencing parameters?

Angrilli et al. (1972) pioneered a number of experiments to establish a relationship between the vortex shedding and

the cylinder displacement. They were the first to introduce the concept of ‘time of vortex origin’ and to suggest that VIV

should be called a ‘self-controlled’ or ‘self-regulated’ phenomenon rather than a ‘self-excited’ one since the alternating

lift force is not initiated and maintained by the body motion to exist or to persist like galloping. They have carried out

experiments with a self-excited cylinder in the range of Reynolds numbers from 2500 to 7000. Fig. 15 shows

the successive positions of the vortices. Angrilli et al. (1972) have found that ‘‘as long as the oscillation is small, as in

Fig. 15(a), vortex trails are not very different from those produced by a stationary bluff body, but for larger oscillations,

as in Figs. 15(b–c), the two vortex trajectories must cross each other twice to reach a stable configuration in the wake.’’

Fig. 15(d) shows an unstable configuration.

Zdravkovich (1982, 1990, 1996) was the first to compare the flow visualizations of others about circular cylinders

subjected to forced or free vibrations. He suggested that the phase change (about p) in the unsteady lift force near

synchronization is connected to a switch in the timing of vortex shedding. This has subsequently been confirmed by Gu

et al. (1994) at a relatively low amplitude (A=D ¼ 0:2) and by Lu and Dalton (1996) through numerical simulations

(Fig. 16). Based on the flow visualization studies of Den Hartog (1934), Meier-Windhorst (1939), Angrilli et al. (1972),

Griffin and Ramberg (1974), Zdravkovich (1982) pointed out that two modes of drastically different vortex shedding

occur in the lock-in range. At the beginning of the said range, the vortex formed on one side of the cylinder is shed when

the cylinder is near the maximum displacement on the opposite side. However, toward the end of the lock-in range, the

vortex is shed when the cylinder is near its maximum displacement on the same side. Zdravkovich (1982) also observed

that the limit between these two modes is at the reduced velocity at which the maximum amplitude occurs. Öngören and

Rockwell (1988a, b), using hydrogen bubbles and hot film, have observed finer details of the vortical structures on either

side of the phase shift of p.
Williamson and Roshko (1988, hereafter referred to as W–R) addressed the questions ‘‘Why does the vortex

formation change its character through synchronization, and why does it change so suddenly at a critical wavelength?’’

They drove a vertical cylinder along a sinusoidal path (300o Reo 1000) in a fluid otherwise at rest and photographed

the path of suspended aluminum particles on the free surface of the tank. They asserted that the dynamics of the

vortices in the near wake is basically inviscid over the said Reynolds number range. As noted earlier, the shear layers

could not have yet developed instabilities in the said Re range toward transition and turbulence. Thus, the observations,

however ingenious, may not be relevant to higher Reynolds numbers. Furthermore, the surfactants (suspended,

nondissolvable aluminum particles) are known to affect strongly the position and strength of vortices and vorticity

distribution at and near the free surface, particularly at small Reynolds numbers (Sarpkaya, 1996b). They have

mentioned that the aluminum-particle technique ‘‘has been used in conjunction with a dye method beneath the surface

to show that the vortex patterns are similar.’’ However, the results of the dye technique have never been reported

(Williamson, 2003).

W–R (1988) described, in the range (300o Reo 1000), the emergence of various regimes (see Fig. 17) in a map of

A=D versus fst/fex (as well as l/D=U/fexD), where l is the wavelength. For U/fexD (or fex/fst) larger than a critical value,

the wake manifests itself as long attached shear layers. Two counter-rotating vortex pairs are shed per cycle in the so-

called 2P mode, as shown in Fig. 18(a), [from Brika and Laneville (1993)]. The 2P mode is associated with the splitting

of a region of vorticity in each half-cycle. The DPIV measurements of G–W (2000) have shown that the vortices of the

2P mode ‘‘convect laterally outwards from the wake centerline, causing a downstream oriented jet type flow close to the

cylinder, which in turn results in a ‘double-wake’ type velocity profile.’’ The 2S mode, depicted in Fig. 18(b), represents

the alternate shedding of vortices in the classical Karman mode. Fig. 19 is a plot by K–W (1999) of their data (ReE
3700) on the map shown in Fig. 17 showing that the Lower-branch regime (see Figs. 2(b) and (c) for definitions)

collapses well when plotted against fst/fex.

The region delineated by 0o A/Do 0.8 and 0.40 o fex/fst o 1.80 in Fig. 17 has been replotted in Fig. 20(b) in

terms of increasing excitation frequency to relate the various modes relative to the changes in the added mass, the
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out-of-phase component of the force, and the phase angle in our data (see Figs. 14 and 20(a)), notwithstanding the large

differences between the Reynolds numbers of W–R (1988): (300o Reo 1000), and ours: Re = 45 000.

Near the left boundary of the 2P mode, in the W–R map, the out-of-phase component of the lift force (energy input

to the cylinder) is small and the phase angle is large (about p) as seen in Fig. 20(a). As one approaches the critical curve

along a constant A=D line (say, 0.5), the phase angle decreases rapidly, the out-of-phase component of the lift increases

towards its maximum (i.e., more energy transfer from the fluid to the cylinder), and the added mass coefficient

approaches its minimum value while remaining negative (i.e., the virtual mass of the oscillating system achieves its

minimum value for the specific amplitude). On the critical curve, the 2P mode changes rather abruptly to the 2S mode,

shown in Fig. 20(b), but only for A=D values smaller than about 0.75. The 2S mode is characterized by the shedding of a

single vortex in each half cycle, like Karman vortex shedding, and by rapid increases in CL sinj, phase angle and the

added mass coefficient. In fact, the well-known recirculation bubble of the mean velocity field of the wake of a

stationary cylinder manifests its presence in the 2S mode, showing that the 2S-mode of shedding, coupled with the

cylinder motion, may lead to even more dynamic and organized motion. In particular, the coefficient of lift, enhanced

by improved correlation, becomes even larger than that for a fixed circular cylinder in steady flow, emphasizing the fact

that the use of all active and passive means to prevent the wake from shifting to the 2S mode is most desirable for all

practical purposes.

The rate at which the velocity step is increased changes the vorticity generated on the cylinder boundary. The

increased vortex strength might precipitate an earlier hysteretic jump in A=D: For small increments, the vorticity

generated is small and diffuses faster without making an impact on the strength of vortices or on the energy transferred

to the cylinder. The critical value of fex/fst is an important example. For A=D ¼ 0:50; it is seen to be about 0.85 in Figs.

14 and 20(a). According to Carberry et al. (2002), the transition occurs in the range of fex/fst=0.84–0.87 (for Re=2300).

However, according to W–R (1988), the critical value is at fex/fstE0.94 for A=D ¼ 0:50; as seen in Figs. 17 and 20(b).

The difference between this value and those noted above may be due to the use of relatively low Reynolds numbers

(300o Reo 1000), as noted above. Even though in the said Re range, and up to about Re=104, the Strouhal number
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Fig. 15. Correlation between the vortex patterns and the oscillation of an elastically mounted cylinder in the range of Reynolds

numbers from 2500 to 7000. The symbols represent the successive positions of the apparent center of vortices: (a) for fex=fwtro1; the
vortex trails are not very different from those produced by a stationary cylinder; (b) at fex=fwtr ¼ 1; the vortex trajectories cross each

other (twice) to reach a stable configuration in the wake; (c) at fex=fwtrE1; the amplitude becomes maximum; and (d) for fex=fwtr > 1;
the vortex configuration becomes unstable (Angrilli et al., 1972).
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for a stationary cylinder remains nearly constant, the all-the-more important shear layer transition to turbulence for

VIV (coherence length and separation angle) occurs at Reynolds number well above 103. Apparently, on the basis of

what has been said so far, the critical line in Fig. 20(b) needs to be shifted to the left (to the right in the original plot of

W–R, Figs. 17 and 20(b) by an amount D(fex/fst)E0.10 at the level of A=D ¼ 0:5: Other values of A=D and Re may

require different amounts of shift. This will improve the agreement between their map and the data by Brika and

Laneville (1993), K–W (1999), and G–W (2000). Finally, it is worth noting that accurate numerical solutions at

relatively low Reynolds numbers [e.g., Blackburn and Henderson (1999) at Re=500] do not find the 2P mode.

Evangelinos and Karniadakis (1999) at Re=1000 found multiple vorticity concentrations and transient mixtures of

(P+S) and 2P modes in the near wake and general wake instability further downstream. The repeat of the W–R (1988)

experiments in a closed system at Reynolds numbers larger than 1.5� 104, without the use of surfactants, is most

desirable in both the forced and self-excited oscillations. Rodriguez and Pruvost (2000) used a vertical tank, a slightly

heated metal cylinder, spanning the width of the test section, and the schlieren technique (based on variations of the

liquid refraction index with temperature). Experiments were conducted at a Reynolds number of 700, at eight different

amplitudes ranging from A=D ¼ 0:125 to A=D ¼ 1: The vortex-shedding phase was defined with respect to the cylinder

position y/A at the time of shedding. A vortex is considered shed when it is cut from its feeding sheet in a manner similar

to that introduced by Sarpkaya and Shoaff (1979) in their discrete vortex simulation of flow-induced vibrations.

Rodriguez and Pruvost (2000) spanned the synchronization region by varying the cylinder oscillation frequency (fex) in

small steps while holding the amplitude A=D constant at one of the desired values. They have measured the prevailing

vortex shedding frequency fns in the wake, as previously done by Cheng and Moretti (1991). They have presented

extensive data and photographs (see Fig. 21) for a large number of subharmonics. Their methods of identifying the
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Fig. 16. Instantaneous streamlines (left) and vorticity contours (right) for various fex=fst (A=D ¼ 0:4; Re=1000). In all cases, the

location of the cylinder is at its extreme upper position. At fex=fst ¼ 0:95; a new vortex is being shed from the upper surface. However,

at fex=fst ¼ 1:0; the shedding has switched to the lower surface (Lu and Dalton, 1996).
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various phenomena and their use of significantly different notations (e.g., L and U for the vortices shed from the lower

and upper sides of the cylinder) made their results somewhat difficult to interpret. Nevertheless, Rodriguez and Pruvost

(2000) have substantiated the fact previously noted by Blevins (1990) that the maximum lift coincides with the shedding

of the L-vortices and the minimum lift with that of the U-vortices. This is because the shedding of an L-vortex causes

the separation point on the upper surface to move downstream. This, in turn, accelerates the flow on the top surface and

increases the lift. Rodriguez and Pruvost (2000) have also noted that the motion of a cable (their primary objective) is

directly related to the nature of the coupling of the numerous synchronization ranges and therefore it is important to

assess whether such coupling can occur in the range of 0o A/Do 1 and, how and when the transition from one mode to

another occurs if the velocity in the far-field varies with time.

It has been known since the 1960s that the transition, the wake states on either side of the transition, and the way in

which they occur depend on the governing parameters and the Schewe parameters given by Eqs. (2) and (17). The

singling out of a frame or two in the high- or low-phase regions of the oscillation is not too meaningful because the

inertial forces called into action prevent an abrupt rupture of the prevailing conditions where there can be almost

seamlessly incremental transitions from cycle to cycle. As noted earlier, Krishnamoorthy et al. (2001) have observed

that ‘‘the phase switch does not occur abruptly. Instead, over several cycles of cylinder oscillations, both ‘in-phase’ and

‘out-of-phase’ vortex shedding occur during the transition.’’ Other work dealing with the comparison of the wake states

of free and forced oscillations is deferred to the next section for reasons which will become clear later.

11. Self-excited vibrations

Numerous contributions have been made toward the understanding of the kinematics and dynamics of self-excited

vibrations of mostly circular cylinders: Marris and Brown (1963), Koopmann (1967b), Feng (1968), Di Silvio (1969),

Angrilli et al. (1972), Griffin (1972), Griffin and Ramberg (1974), Gowda (1975), Di Silvio et al. (1975), Stansby (1976),

Griffin and Koopmann (1977), Dean et al. (1977), Zdravkovich (1982, 1990, 1996), Williamson and Roshko (1988),

Brika and Laneville (1993), Vandiver (1993), Moe et al. (1994), Sarpkaya (1995), Skop and Balasubramanian (1997),

Hover et al. (1997), Hover et al. (1998), Atsavapranee et al. (1998), Zhou et al. (1999), Khalak and Williamson (1999),

Govardhan and Williamson (2000), Pesce and Fujarra (2000), Davis et al. (2001), Laguë and Laneville (2002), Voorhees

and Wei (2002), and on numerical simulations of long flexible cables by Newman and Karniadakis (1997), Bartran et al.
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Fig. 17. Map of vortex patterns of a vertical cylinder forced to move along a sinusoidal path in the Re range of 300oReo1000. The

critical curve marks the transition from one mode of vortex shedding to another (Williamson and Roshko, 1988).
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(1999), Evangelinos and Karniadakis (1999), Triantafyllou et al. (2003). Here only a few of these contributions will be

discussed in some detail.

As noted earlier, the most interesting phenomena in VIV are hysteresis and lock-in/lock-out. For a given system, the

occurrence of hysteresis depends on the approach to the resonance range—the rate of change of the velocity (with small

or large increments or decrements) from a low or from a high velocity. The jump condition (double amplitude response)

originates in the fluid system, and not, as once thought, in the cylinder elastic system.

Marris and Brown (1963) were interested with the elastic response of Pitot tubes under normal operating conditions.

Each tube was cantilevered (in its plane of motion) to one of the walls of a water channel and subjected to uniform flow

in the range (1000o Reo 2000). Marris and Brown were able to change the length of the tube and hence its frequency.

They have determined two lengths (and hence two frequencies) one of which was 35% larger than fst and the other,
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Fig. 18. Photographs and sketches showing the two near-wake patterns responsible for the hysteresis loop (Vrb ¼ 0:93; Re=7350). (a)

2P mode (A=D ¼ 0:40); (b) 2S mode (A=D ¼ 0:27). Both photographs are taken at maximum negative displacement of the cylinder

(Brika and Laneville, 1993).
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about 35% lower than fst. Thus, they were able to bracket the synchronization range of the tubes. To the best of our

knowledge, no one has ever varied the frequency of the test beam by changing its length (and, of course, mass and

damping ratios), except in industrial applications to avoid synchronization.

Feng (1968), inspired by Professor G.V. Parkinson, made one of the more widely known contributions to VIV.

Experiments were carried out in a wind tunnel with a single-degree-of-freedom flexible cylinder with m�=248,

z=0.00103 and m�z ¼ 0:255; as shown in Figs. 1 and 2(a). Feng measured fex, fst, A=D; and the phase angle j for three

types of experiments: (a) the cylinder started from rest at a prescribed velocity U; (b) the velocity was increased by small

increments while the cylinder was oscillating at a steady state amplitude; and (c) the velocity was decreased by small

increments while the cylinder oscillated at a steady-state amplitude. His phase and A=D data were presented as a

function of Vr=U/fvacD. For the first type of experiments, Feng found that for Vr less than about 5, A=D is very small

(the inception phase of oscillations) and the frequency of excitation of the cylinder, fex is smaller than fvac and fns: For Vr

larger than about 5, fns and fex became one and the same or, what we prefer to call, the common frequency fcom, i.e., the

lock-in occurred. The amplitude smoothly rose to a maximum value of A=D ¼ 0:32 at about Vr=6. However, at VrE7,

lock-out occurred, i.e., the vortices returned to their Strouhal relationship and the cylinder, to a frequency very close to

fvac, and, with further increases in velocity, the amplitude dropped to negligible values near Vr ¼ 8:6:
For the second type experiments (velocity increased by small increments while the cylinder was oscillating), the

amplitude reached a much higher value (A=D ¼ 0:53) at about the same Vr (E6) where the maximum of (A=D ¼ 0:32)
occurred in the previous case. However, when Vr reached a value of about 6.4, A=D dropped sharply to the value that

was reached from rest at the same wind speed. This drop was accompanied by a change of about 35	 in phase and, most

certainly, by a change in the wake structure. When the speed was decreased, the amplitude data followed the ‘steady

flow’ case up to a special Vr value of 5.9 at which a second ‘smaller’ jump back to the higher values occurred. This

resulted in a clockwise oscillation hysteresis loop, as shown in Fig. 1. This jump was accompanied by a phase change of

about 60	 and a counter-clockwise phase-hysteresis loop, signaling very interesting changes in the shedding mode of

vortices.

There are a number of similarities as well as differences (e.g., the synchronization and hysteresis covered by the

velocity range, jumps in the phase) between the data obtained by Bishop and Hassan (1964), Feng (1968), and Brika

and Laneville (1993), and for a flexible cylinder by Wu (1989), Saltara et al. (1998), and Pesce and Fujarra (2000),

probably due to the differences in A=D; Re, m�, z; the test bodies (cable and rigid cylinders), and the Schewe

parameters.

Brika and Laneville (1993, hereafter referred to as B–L) performed a series of very thorough and well-documented

experiments in a wind tunnel with a flexible circular tube (m�=2054) in the range of relatively low Reynolds numbers

(from 3.4� 103 to 11.8� 103) and small damping ratios (from z=0.83� 10�4 for small amplitudes to z=2� 10�4 for
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Fig. 19. A=D for ReE3700 and two m� values, plotted in the Williamson-Roshko (1988) map:J, m� ¼ 1:19 and ðm� þ CAÞz ¼ 0:011;
nm� ¼ 8:63 and ðm� þ CAÞz ¼ 0:0145: Solid symbols indicate the Lower-branch regimes (Khalak and Williamson, 1999; Govardhan

and Williamson, 2000).
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higher amplitudes, up to a maximum of A=D ¼ 0:52). A flexible cylinder was to simulate half of the wavelength of a

vibrating cable and to eliminate the end effects. B–L (1993) have performed tests in two regimes: PR: the ‘progressive

regime’ in which the velocity of air was either (a) increased or (b) decreased at small increments while the cylinder was

oscillating at its steady state amplitude; and, IR: the ‘impulsive regime’ in which the velocity of air was fixed and the

cylinder was either (a) released from rest, or (b) externally excited by a shaker, at an amplitude A=D of the order of 0.85,

and then released. Furthermore, as an additional experiment, the regime of PR-a was repeated using a velocity step

twice as large as the original small step. Fig. 22 shows a comparison of the data obtained in the impulsive regimes with

those obtained in the progressive regime as a function of Vrb= (Vr/2p)=U/2pfexD. It should be noted that B–L (1993)

have plotted their data using fex in defining Vr rather than fvac (the so-called undamped natural frequency). However,

the two frequencies in their in-air experiments do not differ much.

The obvious and striking features of the data shown in Fig. 22 are their similarity to those obtained by Feng (1968).

The hysteresis emphasizes once again the fact that ‘one can go a little further if one goes slower and then jumps to where

one should be’ or ‘one jumps sooner, a little higher, if one goes faster, and then ends up at the same A=D’. The phase

angle (not shown here) follows the jumps in A=D quite faithfully. In the regime PR-a, (small increments in velocity),

A=D increases and reaches 0.53 at Vrb=1. The next step (at VrE1.01) is into an abyss that reduces A=D to 0.38 (i.e.,

onto the data for PR-b, the small decrement line) and increases j by about 70	. Subsequently, A=D decreases to very

small values at VrE1.31. If the regime PR-a is repeated with a larger step, as noted above, the amplitude data follows

the PR-a (small increment data) up to A=D ¼ 0:13 (VrE0.87) and then jumps to A=D ¼ 0:40 and then continues to

decrease as in the case of PR-a (small increment). Obviously, it takes a sufficiently large velocity increment (at the right
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Fig. 20. Top half: Sarpkaya’s data shown in Fig. 13, Re=45000; bottom half: a replot of Williamson-Roshko (1988) map

(300oReo1000).
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time) to force the vortices to change to a new configuration sooner. In the absence of a stronger impulse, a stronger

velocity, arrived at gradually, serves the same purpose. However, a closer look at the data and the amplitude traces (not

reproduced here) reveal that there are subtle differences between the two modes. For example, in the narrow range of

Vr=0.88 and 0.95, there are two possible steady state amplitudes for a given velocity as far as the pre-excitation

procedure (IR-b) is concerned. B–L (1993) have pointed out that for velocities larger than the synchronization onset

velocity (Vrb=0.78) and smaller than the lower critical velocity (LCV), the recording of the amplitude build-up from

rest show intriguing behavior. While the system first tends toward an unavailable final state on an imaginary extension

of the Lower branch (Vro0.88), it suddenly departs, at a point defined by a break in the envelope curve, toward a

second and available steady state of the Upper branch. Such bifurcations in the envelope curves are accompanied by an

abrupt change in the phase angle and in the wake flow regime.

B–L (1993) have ascertained that the phase remains constant along the cable (a flexible tube) within 75	 and

concluded that the flow mode is not affected by the variation of the vibration amplitude along the cable and that their

results should be comparable with those obtained with uniform rigid cylinders. Fig. 18, presented earlier, shows their

photographs as well as sketches of the two near-wake vortex patterns responsible for the hysteresis loop (Vrb=0.93,
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Fig. 21. Wake vortex structure over several oscillations of a heated cylinder for fexD=U ¼ 0:109; fex=fns ¼ 1=2 and A=D ¼ 0:237: (a)
shows the flow past the transversely oscillating cylinder; (b) depicts the motion of the cylinder relative to the ambient flow and the

shedding of the upper (U) vortices (at y=A ¼ 71) and the lower (L) vortices (at y=A ¼ 0); and (c) shows that the alternate shedding of

the L- and U-vortices, coupled with the direction of the half cycle, creates a wake with two vortices convected on either side of the axis,

followed by two vortices convected along the axis for fex=fns ¼ 1=2 (Rodriguez and Pruvost, 2000).
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Re=7350) when the cable is at y ¼ �A: The upper half shows the 2P mode at A=D ¼ 0:40 and the lower half the 2S

mode at A=D ¼ 0:27: According to Fig. 17, Vr=5.84 (Vrb=0.93) does not intersect the critical curve and the vortex

shedding mode should be 2P for both cases. However, the large differences in the Reynolds numbers used by W–R

(1988) and B–L (1993), amplitude variations along the cable used by Brika and Laneville, and the small or large

increments or decrements of velocity imposed on the ambient flow, or the release of the cable from a pre-excited state

may lead to different wake states. It appears that 2P-2S mode jump is most sensitive to hysteresis, as intimated by B–L

(1993). This may, in part, be because the 2P mode is the most precarious, and the 2S mode is the most robust of all the

known modes.

Clearly, many ways exist (some yet untried) to lead a body to excitation with unimaginable jumps and hysteretic

behavior, even without the effect of neighboring bodies (multiple tubes or cables). These may exhibit distinctly different

excited modal shapes and hysteresis. The foregoing confirms the fact that the dynamics of the wake is very responsive to

changes imposed on the kinematics of the flow and the fact (stated earlier) that ðD=U2
0 ÞðdU=dtÞ must be quantified

during both the acceleration and deceleration periods for one to understand the effect of the rate of change of velocity

on the inception of the transient states in both the numerical and physical experiments. Only then can one go beyond

the identification of the vortex positions and types of shedding for a given experiment to further the state of the art

toward prediction.

B–L (1993) compared their work with the contributions of Feng (1968) and Bishop and Hassan (1964), as shown in

Fig. 23. The similarities as well as differences (the synchronization and hysteresis covered by the velocity range, jumps in

phase) between the three studies are probably due to the differences in A=D; Re, mass parameter, damping, the test

bodies (cable and rigid cylinders), end conditions, and the Schewe parameters. These need not be discussed here in

further detail.

Sarpkaya (1995) discussed the significance of two-directional or biharmonic free oscillations (in both the in-line and

transverse directions) in light of experiments undertaken for that purpose, to simulate more closely the true nature of

flow-induced vibrations. His data, reproduced here as Fig. 24, have shown that the variation of A=D with Vr for the case

of ‘the same natural frequency in both directions’ yields about 20% larger amplitudes over a 20% larger VrSt = fst/fex

range for a Reynolds number of about 35� 103. However, the variations of A=D for other natural frequency ratios (in-

line versus transverse) are considerably more difficult, indicating dramatic changes in the wake. Moe and Wu (1990)

have noted that the separation points and pressure distribution are strongly affected by the previous history of the

motion and the average forces differ from the forces at the average amplitude due to the strong nonlinearity of the in-

phase and out-of-phase components of the transverse force. Jong and Vandiver (1985) and, subsequently, Vandiver and

Jong (1987) studied the identification of the quadratic system relating cross-flow and in-line VIVs and the relationship

between the in-line and cross-flow vortex-induced oscillations of cylinders. They have concluded that a strong quadratic

relationship exists between the in-line and cross-flow motions under both lock-in and non-lock-in conditions and that
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Fig. 22. The steady state vibration amplitude A=D of the impulsive regimes as a function of Vrb ¼ ðVr=2pÞ ¼ U=ð2pfexDÞ is compared

with the results of the progressive regime: %, from rest; J, from a pre-excited amplitude; - - - - , progressive regime (Brika and

Laneville, 1993). The similarity of their data to those obtained by Feng (1968) is quite striking (Brika and Laneville, 1993).

T. Sarpkaya / Journal of Fluids and Structures 19 (2004) 389–447428



the well-known frequency doubling phenomena in the in-line response is a consequence of such a quadratic correlation.

In other words, the motions in two directions are not independent of each other. As noted in Section 4, added mass is a

function of the type of motion of the body. Thus, the added mass of a cylinder undergoing 2-dof oscillations (tracing the

path of figure eight) is not the same as that of a cylinder constrained to move only in the transverse direction. The issue

is further complicated by the differences between their dynamics (correlation length, kinetic energy imparted to the

cylinder, and the phase angle). Only Jauvtis and Williamson (2002), while experimenting with a cylinder (with the same

in-line and transverse natural frequency of 0.4Hz) in two degrees of freedom, found that ‘‘the freedom to oscillate in-

line with the flow affects the transverse vibration surprisingly little’’ and argued that the studies of the past (presumably

at lower Reynolds numbers) on bodies ‘‘restrained to move only laterally to the fluid flow remain relevant and valid for

the problem of VIV of a body in two degrees of freedom.’’ In direct contradiction, Marcollo and Hinwood (2002)

found, in connection with their work on ‘the cross-flow and in-line responses of a long flexible cylinder subjected to
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Fig. 23. Comparison of Brika and Laneville’s data (1993) with those of Feng (1968) and Bishop and Hassan (1964). For symbols see

Fig. 22 and Brika and Laneville (1993).

T. Sarpkaya / Journal of Fluids and Structures 19 (2004) 389–447 429



uniform flow,’ that ‘‘The in-line vibration is found to have a strong dependency on the cross-flow vibration and is

forced at frequencies very different to that which would be predicted a priori.’’ It is obvious from the foregoing and

from a more careful perusal of our data shown in Fig. 24 that the interaction of cross-flow and in-line oscillations leads

to substantially different results from those found at smaller Reynolds numbers. As we shall discuss later, the field data

at large Reynolds numbers are in conformity with our findings.

Hover et al. (1997) pioneered a force-feedback model (FFM) for use in a laboratory environment. FFM allows

modelling of complex structural dynamics, while fully accounting for the fluid–structure interaction. This is particularly

significant since VIVs of cables and pipes alter the static configuration and induce additional static and large dynamic

loads. The force-feedback scheme can address a range of free-vibration states, including multiple modes, traveling

waves, and other nonlinearities. The use of FFM in industrial applications requires the development of appropriate

hydrodynamic models. However, FFM’s ability to help to sort out the differences between the single- and multi-mode

cases and to understand the additional mechanisms that help to organize the wake [and possibly modify the correlation

length and the mode transitions, Hover et al. (2002)] throws additional light on the intrinsic nature of VIV.
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Fig. 24. (a) the normalized drag coefficient; and, (b) A=D are shown for three cases for Re=35000: (1) in-line free, (2) in-line restricted,

and (3) fex=fey ¼ 2: It is seen that both Cd=Cdo and A=D for the case of ‘the same natural frequency in both directions’ yield about 20%

larger values over a 20% larger VrStð¼ fst=fexÞ range. However, the variations of A=D for other natural frequency ratios (in-line versus

transverse) are considerably more complex (Sarpkaya, 1995).
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K–W (1999) and G–W (2000) conducted a series of experiments with elastically mounted rigid cylinders at relatively

small Reynolds numbers (increasing with Vr from about 2000 to 10 000). Their results are briefly summarized below.

(a) There are two distinct types of system responses, depending on whether the combined mass-damping parameter

(m�z ) is high or low.

(b) At high m�z (e.g., 0.255), there are only two branches: an ‘Initial excitation branch’ (or, a combined Initial-Upper

branch), which yields the maximum amplitude for the case under consideration depicted in Figs. 1 (triangles) and 2

(diamonds), and a ‘Lower branch’, encountered in earlier experiments (Feng, 1968; Brika and Laneville, 1993; Saltara

et al., 1998; Pesce and Fujarra, 2000). The ‘Initial’ and ‘Lower’ branches are separated by a continuous mode transition.

At low m�z (e.g., 0.013), there are three branches, as seen in Fig. 2 (black symbols): an ‘Initial branch’ which no longer

yields the maximum amplitude, an ‘Upper branch’ which now yields the highest amplitude (both in the region where Re

o 5000), and a ‘Lower branch’ which exhibits better periodicity.

(c) It has been shown by a number of investigators (Hover et al., 1998; B–L, 1993; G–W, 2000) that the 2S mode

occurs in the initial (quasi-periodic) and in the initial (periodic) regions. The shedding mode changes to 2P in both the

Upper and Lower branches. However, the two vortices of each pair in the Upper branch have quite unequal strengths

whereas they are of about equal strength in the Lower branch. Finally, the Initial2Upper branch transition is

hysteretic, but the Upper2Lower transition exhibits intermitting switching. The switch in the timing of vortex

shedding is coincident with the phase jump (ftotal).

The maximum lift (r.m.s.) occurs at the transition between the Initial excitation and the Upper branch. It is indeed

very low in the Lower branch. It is often stated that the phase angle in the subject transition ‘‘remains at just above 0	’’

(K–W, 1999). Clearly, the said phase angle must be greater than zero in order for the lift coefficient to remain finite

according to our Eq. (14).

(d) G–W (2000) argued that ‘‘the range of synchronization is controlled primarily by m� (when m�z is constant),

whereas the peak amplitudes are controlled principally by the product of m�z:’’ Their observations at low Reynolds

numbers and low-mass ratios do not refute the long-standing concerns of Sarpkaya (1978, 1979) and Zdravkovich

(1990) regarding the use of a combined mass-damping parameter.

(e) G–W (2000) have shown, for two values of m� (1.19 and 8.63) or ðm� þ CAÞz (0.0110 and 0.0145), that the

Lower-branch regimes collapse well when plotted against fst/fex. Furthermore, the amplitude and the region of

synchronization correlate with U/Dfcom for a constant value of small m�z (0.014, 0.017, 0.019). These empirical

correlations need to be confirmed at much higher Reynolds numbers with other sets of m�z for small, intermediate, and

large values of m�z.

(f) Finally, as noted earlier, K–W (1999) and, subsequently, G–W (2000) have introduced a frequency

ratio f�=[(m�+CA)/(m
�+Ca)]

1/2 where ‘‘Ca is an ‘effective’ added-mass coefficient that includes an apparent

effect due to the total transverse fluid force in phase with the body acceleration,’’ i.e., Ca is the added mass

coefficient, as defined in this paper. In fact, f� is nothing more than the ratio of the oscillation frequency, based on the

unknown ‘prevailing’ virtual mass, to the ‘in still-water frequency,’ obtained from pluck tests, i.e., CA=1. Thus,

contrary to their assertion, f� is not based on the equations of motion. Furthermore, numerical solutions of the ‘exact’

equations of motion do not need, do not depend on, and do not give rise to such arbitrary combinations of in-still-water

virtual mass (m�+CA) and the actual virtual mass (m�+Ca). Nevertheless, f� has been used in the past and gives an

indication of the motion in both forced and free vibration experiments. However, more recent experience has shown

that the use of other normalized parameters (e.g., fex/fst, fex/fvac) are preferable and consistent with those used in

numerical simulations.

K–W (1999) and G–W (2000) concluded, on the basis of their experiments with m�=1.19, 2.22, and 8.63, that

‘‘Ca is a constant along the Lower branch’’ and ‘‘it has the same constant value for all other m�’’
and ‘‘Ca ¼ �0:5470:02’’. It is very important to note that they have assumed mass-damping (m�z) to

be small. They have noted that ‘‘our deduced value for Ca is consistent with results from forced oscillations by

Gopalkrishnan (1993), where he finds CaE� 0:60 in a large region of the (A=D versus fst=fex) plane,

encompassing the complete domain of the Lower branch.’’ This is not quite true. In K–W’s (1999) and

G–W’s (2000) experiments, the start of the Lower branch is at fex/fst=0.87 and the end is at fex/fst=0.54.

In terms of Gopalkrishnan’s nondimensional frequency (fexD/U), the said limits are at 0.104 and 0.160. It

should be noted that the critical phase change in Gopalkrishnan’s experiments occurs at fex/fst=0.83 and

not at 0.87. In any case, the fact is that in the range of the limits of the Lower branch, Ca in Gopalkrishnan’s

plot (his original Fig. 3.16) rises from –0.3 to –0.6 as fex/fst decreases from 0.83 to 0.70 and remains thereafter

nearly constant at –0.60 for A=Dp0:6: For larger values of A=D; Ca is limited by –0.30 on either side of the

boundaries of the Lower branch. The important fact is that Ca is not a constant and depends on A=D and

all other parameters that determine A=D: Notwithstanding these facts, one must note that Gopalkrishnan’s

added mass data is rather sketchy. Sarpkaya (1978) presented detailed drag and added mass coefficients obtained by
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using forced oscillations. His Ca data are reproduced here as Fig. 25 where the original U=fexD axis or Vr is

multiplied by 1.13 to match the Strouhal numbers at critical transitions. Thus, it is necessary to carry out detailed

experiments by maintaining m� constant (at a relatively small value) and by systematically increasing or decreasing the

damping and hence the amplitude of the oscillations to investigate whether one would obtain Ca values higher or lower

than –0.54.

Triantafyllou et al. (2003) have carried out experiments with a single rigid cylinder (1-dof) and a single

flexible cylinder (pinned beam, 2-dof) at the 2-dof-Carriage research facility of the Massachusetts

Institute of Technology, hereafter referred to as MIT. The experimental conditions were as follows: Re =3� 104,

Aspect ratio = 26, m�=3.0, and z=0.035, and m�z= 0.105. The results are shown in Fig. 26. The amplitude A=D (1/

10th highest average, treating the response as a random process) of the 1-dof rigid cylinder reaches a maximum just a

little over 1.0 at VrE5.6 and reduces to very small values after VrE11. What is perhaps most important is the absence,

rather than the presence, of some observations made at lower Reynolds numbers with low m�z: a hysteretic jump from

the Initial excitation branch to the Upper branch (as in Fig. 2). In fact, the variation of A=D; in Fig. 26(a), from its

inception to its maximum proceeds rather smoothly. This may be either due to the fact that in the experiments of

Triantafyllou et al. (2003), m�z (=0.105) is not small enough or the Reynolds number in G–W’s (2000) experiments is

not high enough for the Gerrard–Bloor transition waves in the free shear layers to disappear and the shear layer

transition to reach its maximum upstream temporal mean position. In other words, the Initial branches observed at low

m�z and at low Re may be a consequence of incomplete transition in the shear layers or, in other words, a low-Reynolds

number effect. Experiments are needed with m�z o0.01 where the minimum Re at Vr=3 is larger than about 15 000 to

resolve the existence or absence of various regimes in the A=D versus Vr plot at industrially significant Reynolds

numbers.

Fig. 26(b), for the flexible cylinder (a pinned beam with 2-dof), shows essentially the same overall behavior as that for

the rigid cylinder as far as the absence of various ‘branches’ are concerned. However, the position of the maximum A=D

is shifted to larger Vr (about 7) and to larger A=D (about 1.5). Fig. 26(c) shows the motion trajectories of the flexible

cylinder. It is evident from the in-line force coefficient as well from Fig. 26(c) that the largest excursions in the drag

direction occur at Vr E5.5, not at VrE7 where the maximum amplitudes occur in the transverse direction. Clearly, the

maxima of the in-line and transverse oscillations do not occur simultaneously, as seen in Figs. 26(b) and (c), the former

precedes the latter. Also the larger in-line amplitudes in the range of 4oVro6 suggest improved and sustained

correlation conducive to in-line forces.
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Fig. 25. Variation of the inertia coefficient Ca (in-phase component of the transverse force) with Vr ¼ U=fexD for representative values

of A=D [from Sarpkaya (1978); Vr is multiplied by 1.13 to match the Strouhal numbers at critical transitions].
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12. VIV at high Re: facts, extrapolations, and conjectures

In the foregoing, we have presented mostly experimental facts in the range of Reynolds numbers from about 500 to

6� 104. These were obtained through small and medium-scale laboratory experiments under controlled conditions.

Many relevant parameters such as the correlation length, pressure distribution, separation points, etc. were not

measured and/or reported.

Experiments with forced and self-excited cylinders in nonsheared flows have shown that the amplitude ratio A=D; the
phase angle j, and the in-phase and out-of-phase components of the lift force depend (mostly) on the reduced velocity

Vr or its various versions. These parameters are needed for the iterative design of relatively simple cables or pipes

subjected to uniform flows.

However, the ocean environment is considerably more complex: lack of data, sufficient insight, and

practical experience on the occurrence of VIV at critical to super-critical Reynolds numbers in omni-directional

waves and currents, uniform and/or nonuniform shear, stratification, ambient turbulence, with various

types of excrescencies and possible multi-modal response of structures, force the designers to continue to use

relatively high safety factors. The matter is further complicated by the fact that data obtained either in the

large basins around the world or in the oceans by the industry are often case-specific and proprietary. The wide

dissemination of the existing ocean data would have helped to resolve many of the issues cited above for the

betterment of all concerned. We do not hope to change the existing operational culture of the industrial organizations,

however, we are grateful to a few who shared some information with us during the past year so that we could glean

some facts from them.
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Fig. 26. (a) One degree of freedom rigid cylinder (Re=30000, L=D ¼ 26; m� ¼ 3:0; z ¼ 0:035; and m�z ¼ 0:105). The amplitude A=D

( 1
10
th highest average) reaches a maximum just a little over 1.0 at VrE5:6: There is no upper branch, but only a smooth increase in A=D:

(b) A flexible cylinder (a pinned beam with 2-dof) exhibits essentially the same overall behavior. However, the position of the maximum

A=D is shifted to larger Vr (about 7) and to larger A=D (about 1.5). (c) The maxima of the in-line and transverse motion trajectories do

not occur simultaneously, the former precedes the latter, see also the forces in 26(b) (Triantafyllou et al., 2003).
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12.1. Discussion of experiments

As we have noted previously, in connection with the discussion of the ‘‘Governing and influencing parameters,’’

Humphries and Walker (1988, hereafter referred to as H–W) carried out extensive experiments with a cylinder (D

=0.168m, L=D ¼ 33; with a ‘smooth external finish’, m� =1.98, z=0.0143, m�z=0.0283, and fwtr=1.23Hz) in a deep

flume in the range of Reynolds numbers from about 50 000 to 4� 105 in both the nominally uniform flow, (Umax/

Umin)=1:1, and in linear (positive) shear with 1:1.5, 1:2, and 1:3, with the corresponding shear parameters of 0.0, 0.012.

0.02, and 0.03, respectively. The cylinder was effectively a pinned–pinned beam. As they have noted, ‘‘The top end of the

‘pin’ mounting was connected to a hydraulic ram to allow vertical movements as the vertical cylinder flexed. This

prevented the introduction of axial tension, and hence changes in natural frequency, due to the model deflection.’’

The results of H–W are shown in Figs. 27 and 28 for the global drag coefficient and the cross-flow amplitude

response, respectively. Fig. 27 shows that the drag coefficient for the uniform flow (Umax/Umin= 1:1) is dramatically

amplified with respect to the rigid cylinder (at rest) and that VIV in uniform flow produces the largest drag (after an

initial anticipated sharp drop) in the critical regime. In the words of one of the reviewers, ‘‘this highlights an extreme

sensitivity to VIV in the critical regime, and perhaps a good ‘‘flagship’’ example of the state of affairs in Re scaling’’ (at

least for an effectively pinned–pinned beam, as noted above).

The nature of the variation of Cd is very much like that of a cylinder entering the critical transition, with Cd dropping

sharply. However, when lock-in occurs (with 2-dof), Cd increases sharply, proving that VIV occurred within the zone of

critical transition. Furthermore, even in the critical Re region, the occurrence of maximum Cd (at about Uref /fwtrD

E5.6) in Fig. 27 precedes the occurrence of maximum A=D (at Uref /fwtrDE6.2) in Fig. 28, as in the case shown in Figs.

26(a) and (b), for a sub-critical flow. Furthermore, the maximum A=D for the no-shear data (about 1.5 at Uref/fwtrD

E6.2) corresponds quite well with that in Fig. 26(b) (about 1.5 at Uref/fwtrDE7). As to the effect of shear, the data

under consideration clearly show that Cd decreases with increasing shear and the lock-in occurs with smaller peaks at

smaller Uref/fwtrD. Likewise, A=D maxima decrease toward unity. It is further noted that shear extends the range of the

lock-in region. However, these observations and the results shown in Figs. 27 and 28 are of a global nature only since

they are based on the reference velocity at mid-span. With higher shear, the character of the flow (supercritical flow,

high-intensity turbulence) at the top of the pipe may be significantly different from that at the bottom (subcritical flow,

lower turbulence), and there is no simple way to average out or to explain the difficult-to-quantify occurrences and

transitions along the pipe. In spite of all these, shear should not necessarily instill a ‘fear of the unknown’ in most

designs.

In recent years, several models have been developed for the prediction of VIV of slender marine structures such as

risers and cables. A method for predicting approximately the static and lift responses of a flexible cylinder in a

unidirectional sheared current was outlined by Patrikalakis and Chryssostomidis (1986). Their approach, based on the

experimental data obtained by Sarpkaya (1978), represents the multifrequency lift response of a flexible cylinder in a

ARTICLE IN PRESS

Fig. 27. (a) The nature of the variation of Cd is like that of a smooth cylinder entering the critical transition, with Cd dropping sharply.

The VIV (with 2-dof) first arrests the drop in Cd and then increases it sharply, proving that VIV occurred within the zone of critical

transition. The drag for the uniform flow ðUmax=Umin ¼ 1 : 1Þ is dramatically amplified with respect to the rigid cylinder (at rest). As to

the effects of shear, the maxima of Cd decrease with increasing shear and occur at smaller Uref=fwtrD (Humphries and Walker, 1988).
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sheared current by predicting a number of independently determined, monochromatic, multimode dynamic solutions. A

numerical example assuming bimodal solutions is included to illustrate the method for the geometry of a single-tube

marine riser.

Larsen and Halse (1995) provided a direct comparison and comprehensive discussion of the most commonly used

models (Skomedal et al., 1989; Nedergaard et al., 1994; Triantafyllou et al., 1994; Vandiver et al., 1993; Vandiver and

Li, 1994; Larsen and Bech, 1986; Lyons and Patel, 1989). Only one model was based on CFD (Skomedal et al., 1989)

and only one model considered a stochastic load process (Vandiver et al., 1993).

Larsen and Halse (1995) concluded that large discrepancies exist between the predictions of the models compared and

that ‘‘all aspects of VIVs are still not understood.’’ These include, but not limited to, description of the spatial

attenuation, definition of the excitation zones, the stochastic nature of vortex shedding process in time and space, the

need to use experimentally determined coefficients, lack of correspondence between the experimental conditions and the

application, and the use of different parameters in various data bases. Individually, each modeling group tracks the

forecast skill of their model.

Future efforts may be directed towards the development of models based on VEMs (Sarpkaya, 1989; Sarpkaya and

Shoaff, 1979) and on three-dimensional unsteady CFD codes, full-scale and model-scale experimental data,

polyspectral methods, and nonlinear control. The objective of the second effort is to generate a database that will

be used to develop and calibrate finite-degree of freedom models for design and analysis of VIV problems.

A numerical simulation tool was developed by Dalheim (1999) at Det Norske Veritas for the prediction of VIV of

flexible risers in sheared currents with some promising results. The studies of large-scale model testing of deep sea risers

(90m long) in a shear current (Huse et al., 1998) have produced a number of important results: (a) VIVs may cause

resonant axial vibrations in a deep-sea steel riser whether it is pinned at both ends or free at one end and pinned at the

other; (b) such axial vibrations may lead to excessive stresses in the risers, significantly larger than the bending fatigue

stresses, normally considered to be the main problem of VIV; and (c) reducing or eliminating the lateral as well as the

axial excitation by employing the most suitable VIV suppression devices goes a long way toward reducing the high axial

stresses.

It is evident from the foregoing that the end conditions of the test pipe, that is, the freedom allowed to the ends to

move cyclically in the axial direction, emerges as an important parameter, particularly in the field tests. If both ends of a

pipe (say, pinned–pinned) are constrained to extensional motion, the A=D will be smaller than if one or both ends were

free to move in the axial direction, as in the case of tests by Humphries and Walker (1988). In a long pipeline,
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Fig. 28. The maximum A=D for the no-shear case (about 1.5 at Vref=fwtrDE6:2) corresponds quite well with that in Fig. 26 (about 1.5

at Uref=fwtrDE7). With shear, the maxima of A=D occur with reduced peaks at smaller Uref=fwtrD and decrease towards unity. It

appears that shear extends the range of the lock-in region. Even in the critical Re region, the occurrence of maximum Cd (at about

Uref=fwtrDE5:6) precedes the occurrence of maximum A=D (at Uref=fwtrDE6:2), as in Figs. 26(a) and (b) for the sub-critical flow

(Humphries and Walker, 1988).
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every span is elastically connected to each other. This serves as a strong damper and increases the stiffness

of the line, which, in turn, reduces the amplitude of VIV. The amount of reduction in A=D is not, however, easy to

quantify because of its dependence on several other parameters (e.g., m�, z, Lspan/D, stiffness, shearing strains,

temperature and its gradients, friction, time-dependent roughness, etc.). It is also clear from the foregoing, as well as

from other sources, that high-Re data are not significantly different from those seen at subcritical Reynolds numbers

above 20 000.

Bruschi et al. (1982) described two experimental investigations at high Reynolds numbers. The first was conducted in

a wind tunnel with a model cylinder to quantify the wall-proximity effects. The second was carried out with a full-scale

pipeline span (with various types of roughness) immersed in a tidal current (1.7� 105 o Re o 2.2� 105). Bruschi et al.

(1982) have not presented any graphical or numerical results but made the following observations: (a) the oscillations at

the center of the span reached 0.8D at Re=1.7� 105 for a pipe of D=0.15m, and A=2D at Re= 2.4� 105 for a pipe of

D=0.51m; and (b) the flow was in the critical transition region at the lower Re and in the supercritical region at the

upper Re. They have conducted engineering tests with helical ropes and other ‘damping’ devices.

Allen and Henning (1997) performed experiments with two flexible as well as nonflexible circular cylinders in the

critical/supercritical Reynolds number range (D1E0.088m, k/D1=1.37� 10�4, in the Re range of

2� 105oReo6� 105; and D2 E0.14m, k/D2=9.94� 10�5, in the Re range of 6� 105oReo1.5� 106). Varying

degrees of difficulty were encountered with the end conditions, alignment, Froude numbers exceeding unity (in the test

basin) and the duration of the data-acquisition period. Their stationary nonflexible cylinder experiments tended to

agree with the well-known results of Roshko (1961), Schewe (1983), and Shih et al. (1992) at similar k/D values. The

results have once again illustrated the fact that the case of a smooth cylinder is a pathological case and the lightly

roughened cylinder becomes the canonical bluff body, particularly at supercritical Reynolds numbers, for both

stationary and vibrating cylinders.

For the smaller cylinder undergoing VIV, the drag coefficient decreased from about 1.2 to 0.6, the in-line r.m.s.

displacement remained nearly constant at about A=D ¼ 0:1; and the amplitude of the transverse oscillations leveled off

at A=D ¼ 0:4 for Re larger than about 3.2� 105. For the larger cylinder undergoing VIV, the drag coefficient increased

from 0.45 (at Re ¼ 7� 105) to a maximum of 0.7 (at Re ¼ 1:3� 106) and then decreased to about 0.6 at Re ¼
1:5� 106: The in-line r.m.s. displacement remained nearly constant at about A=D ¼ 0:05; except at a single point

(Re ¼ 1:05� 106) at which it jumped to about 0.13. It was not clear whether this singular event was a Reynolds number

effect or, more likely, the effect of the Froude number exceeding unity. The r.m.s. amplitude of the transverse

oscillations increased almost linearly from zero (at Re = 7� 105) to A=D ¼ 0:44 (at Re ¼ 1:3� 1:3� 106) and then

decreased linearly to about 0.3 at the highest Reynolds number encountered (Re ¼ 1:5� 106).

12.2. Tentative conclusions

Our numerous conversations with enlightened representatives of several large petroleum concerns have helped us to

deduce the following tentative conclusions, which will be presented here without empirical verification proof (i.e., caveat

emptor!):

1. It is a well-known fact that as the Reynolds number increases from about 4� 105 to about 106, the Strouhal

number is undefinable for a steady flow past a ‘smooth’ cylinder. However, for a cylinder subjected to VIV, the Strouhal

number becomes definable in the said Re range and smoothly transitions from about 0.18 to 0.24, due to the enhanced

correlation. The wake width decreases from about D to 0.7D, and the drag coefficient decreases accordingly.

2. The limited data show that the case of a ‘‘smooth’’ cylinder is a pathological case and the lightly roughened

cylinder becomes the canonical bluff body at high Reynolds numbers [see, e.g., Achenbach (1971), Schewe (1983), Shih

et al. (1992), Okajima et al. (1999)]. Cylinders of relatively small roughness exhibit relatively small A=D in the usual

range of reduced velocities. However, with a roughness of about 1mm (for instance, over a cylinder of one foot in

diameter), one may expect a maximum A=D ratio of about 0.95. The same cylinder subjected to forced oscillations

yields results very similar to those obtained with self-excited oscillations. The foregoing results are mostly for cylinders

constrained in the in-line direction.

3. Experiments with 2-dof (both in-line and transverse oscillations) at very high Reynolds numbers show that the

results are indeed nearly identical to those reported by Sarpkaya (1995) (see Fig. 24), as we have noted earlier. The 2-dof

case produced 10–20% larger A=D values reaching about A=D ¼ 1 over a wider range of reduced velocities (from about

4–13). The maximum A=D values occur in the range of reduced velocities from 8–10. In the case of the constrained or 1-

dof cylinders, the maximum A=D is somewhat smaller (about 0.85) in the range of reduced velocities from about 5–6, as

would be expected. These results require further confirmation, hopefully, in the very near future.

4. The effect of shear is more difficult to account for in terms of various transitions and axial variations in the flow

states. However, the experiments of Humphries and Walker (1988) provide strong guidance for design. Currently, strip

ARTICLE IN PRESS
T. Sarpkaya / Journal of Fluids and Structures 19 (2004) 389–447436



theory, based on forced cylinder data and correlation models, is used in spite of its obvious shortcomings (e.g., phase

and amplitude differences between the segments, directional changes in velocity and/or shear).

5. None of the high Reynolds number experiments (Re > 20 000) show such phenomena as ‘‘Initial branch’’ (seen

only at Reynolds numbers smaller than about 5000). The vortex modes of 2P, 2S, and others have been mapped only at

Reynolds numbers below 1000. Blackburn and Henderson (1999) did not find the 2P mode at Re ¼ 500: Evangelinos
and Karniadakis (1999) at Re ¼ 1000 found multiple vorticity concentrations and transient mixtures of (P+S) and 2P

modes in the near wake and general wake instability further downstream. Brika and Laneville (1993) found 2P and 2S

modes in the range of Reynolds numbers from 3:4� 103 to 11:8� 103: As we have noted earlier, the mean position of

the line of transition to turbulence does not reach upstream enough for Re less than about 15� 103 to 20� 103: Lastly,
it should be noted that at Re larger than about 20 000, it may not be possible to photograph coherent vortex structures

in the wake.

6. In free oscillations at sufficiently large Re, the oscillations are not sinusoidal, as evidenced by many experiments

and numerical simulations. Consequently, the flow does not become fully established, say ‘‘periodic,’’ because the

amplitude, added-mass, frequency, phase angle, vortex structures, shear layers never become fully established. Each

cycle is affected by the character of the previous cycle. Consequently, the ever-changing topology of the flow prevents it

from exhibiting sharp changes (as branches) in the A=D versus Vr plots at high Re.

7. It may be stated with little reservation that high-Re data (A=D and force-transfer coefficients, such as lift and

added-mass) with smooth and reasonably roughened, nontapered cylinders exhibit essentially the same results as those

the research community has produced in the laboratories during the past 15 years in the range of Reynolds numbers

from about 20 000 to 60 000 (except, as noted above, with regard to the smooth transition in Strouhal numbers and drag

coefficients in the critical to supercritical regimes). Thus the issue is not the discovery of great surprises at high Re, but

rather how to refine the high Re data to reduce the error to less than 10%, how to deal better with shear, how to

quantify and to translate the effects of the end conditions (axial motion) for single-span laboratory experiments versus

continuous pipes, how to account for and quantify multi-modes and mode interference, how to suppress VIV at any Re

without drag penalty, and how to reduce the safety factors.

8. The wide dissemination of the large-scale data will improve their interpretation and the planning of future

experiments. It will also enrich the science and technology of VIV and help to resolve many of the issues cited above for

the betterment of all concerned.

13. Numerical simulations

The numerical simulation of flow past a circular cylinder undergoing VIV at relatively small Reynolds numbers

(particularly in the range Re =100–1000) is complicated by some of the most difficult problems of fluid mechanics such

as separation excursions, incomplete transition in the shear layers, and the coherence length based on a yet unexplained

coupling mechanism between the dynamics of the near-wake and that of the structure. Most of the disparity between

the experiments and numerical simulations is attributable to the fact the mean position of the line of transition to

turbulence does not reach upstream enough for Re less than about 15 000 to 20 000, even though VIV with 2-dof may

precipitate the instability somewhat sooner.

Many models of turbulence, for every occasion, are described in numerous papers. However, DNS does not require

‘modeling.’ It deals only and purely with the numerical problem of solving the time-dependent Navier–Stokes

equations, albeit at relatively small Reynolds numbers. LESs appeared to be a compromise. However, as Grinstein and

Karniadakis (2002) noted recently: ‘‘After more than 30 years of intense research on LESs of turbulent flows based on

eddy-viscosity subfilter models (Deardroff, 1970), there is now consensus that such an approach is subject to

fundamental limitations. It has been demonstrated for a number of different flows that the shear stress and strain

tensors involved in subfilter eddy-viscosity models have different topological features rendering scalar eddy-viscosity

models inaccurate.’’ Recently, Michelassi et al. (2003) expressed a more optimistic point of view in connection with their

work on flow around low-pressure turbine blades at Reynolds numbers 5.18� 104 and 2� 105: ‘‘Direct numerical

simulation and LES are able to provide a much deeper insight in the wake-boundary-layer interaction mechanism as

compared to two-dimensional unsteady RANS simulations.’’

Other computational methods include the discrete-vortex method (DVM), the use of RANS, or the combination of a

number of them. We will not dwell on simulations at Reynolds numbers smaller than 1000. They may be of interest in

assessing a given numerical scheme at a given Re, but not necessarily to predict VIV at more realistic Reynolds

numbers.

The discrete vortex model was first used by Sarpkaya and Shoaff (1979) with reasonable success after judicious

selection of the controlling parameters (Sarpkaya, 1989, 1994). Meneghini et al. (2002) used DVM to calculate the
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behavior of cylinders (m� ¼ 3:3; m�z ¼ 0:013; and L=D ¼ 94:5; 480, 4600) subjected to currents and shear (Re =

10 000). Their simulation did not yield an ‘Upper branch.’ The case of a cantilever yielded similar results. Their single

riser simulations provided the expected vibration modes and the comparisons with the quasi-steady analysis were quite

encouraging.

Evangelinos and Karniadakis (1999) and, subsequently, Evangelinos et al. (2000), Lucor and Karniadakis (2002), and

the references cited therein, dealt with the predictability and uncertainty in flow-structure interactions and with the

dynamics of flow structures in the wake of rigid and flexible cylinders subjected to VIV. Recently, Lucor et al. (2003)

extended their DNS model to Re = 3000 (by increasing the lateral spacing of the mesh size), but not without some

difficulties. Guilmineau and Queutey (2001) used a two-dimensional finite volume analysis in conjunction with RANS

and a K–omodel for turbulence to simulate the 1-dof response of a cylinder in the range of Re from 900 to 15� 103 and

compared their predictions with those of K–W (1999) at Re E3700. Three initial conditions were used in the

simulations: a cylinder starting from a state of rest, increasing velocity, and decreasing velocity. For the conditions of

‘from rest’ and ‘decreasing velocity’ they have predicted only the Lower branch. With ‘increasing’ velocity, on the other

hand, the maximum amplitude corresponded to the experimental value, but the Upper branch did not match the

experiments (Fig. 29). The use of a fully developed turbulence model, (K–o) for a two-dimensional finite volume

analysis, in the range of transitional Reynolds numbers (for the shear layers) makes it difficult to discern the reasons for

the differences between the experiments and their numerical simulations.

Notwithstanding the concerns expressed by Grinstein and Karniadakis (2002), LES has been used by a number of

investigators. Saltara et al. (1998) used DVM and LES for a 1-dof VIV at Re ¼ 1000: Tutar and Holdo (2000) used LES

in conjunction with the finite element method at Re ¼ 2:4� 104 for a cylinder subjected to forced oscillations and found

that three-dimensional representation was necessary to obtain accurate enough results. This follows from the fact that

two-dimensional representations naturally yield perfect correlations. VIV enhances the correlation but it does not make

it perfect. As we have noted earlier, the degree of correlation, related to all other parameters, plays a major role in all

aspects of VIV. As noted by Al-Jamal and Dalton (2004), ‘‘An LES model, either 2-D or 3-D, is not capable of

calculating the full flow past a stationary cylinder, much less an oscillating one.’’ DNS is Re—limited for the foreseeable

future.

Zhang and Dalton (1996) performed a two-dimensional LES study for a transversely oscillating cylinder at

Re=13 000. Their results exhibited the same trends as the experimental results of Feng (1968). Lu and Dalton (1996)
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Fig. 29. A two-dimensional finite volume analysis, RANS equations, and a K–o model for turbulence are used to simulate the 1-dof

response of a cylinder in the range of Re from 900 to 15 000 with m� ¼ 2:4 and m�z ¼ 0:013: Three initial conditions were used:

cylinder starting from a state of rest, increasing velocity, and decreasing velocity. For the conditions of ‘from the rest’ and ‘decreasing

velocity’ only the lower branch was predicted. With ‘increasing’ velocity, on the other hand, the maximum amplitude corresponded to

the experimental value, but the upper branch did not match the experiments (Guilminaeu and Queutey, 2001).
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examined the VIV problem for a two-dimensional viscous flow at Re = 200 and two-dimensional turbulent flow at Re

= 855. They found good agreement with the results of Öngören and Rockwell (1988a, b) and reasonably good

agreement with the results of Lecointe and Piquet (1989). However, the lift calculations of Lecointe and

Piquet were about 35% larger at Re = 855 than those of Zhang and Dalton because they had not used a

turbulence model. More recently, Al-Jamal and Dalton (2004) have performed two-dimensional LES calculations of the

self-excited response of a cylinder at Re = 8000 for a range of damping ratios and natural frequencies. In spite of the

shortcomings of a two-dimensional simplification, their results predicted the expected vibratory response in the range

0.72ofcom/fsto1.26. Decreasing material damping increased the lock-in range. A beating behavior was observed in the

oscillations, which decreased with increasing damping (see Fig. 9). Clearly, one does not expect the two-dimensional

LES to represent the inception and growth of the instabilities accurately, let alone the transition to turbulence, in

unsteady shear layers. It appears that the question of the three-dimensional numerical simulation of VIV even for a

smooth circular cylinder in the range of Reynolds numbers from a few thousand to over a million will remain

unresolved indefinitely. Higher order modes caused by secondary instabilities resulting from the changes in phase and

amplitude in self-excited oscillations will certainly complicate the simulations with any turbulence model in any indirect

numerical simulation.

At present, none of the methods discussed above ensures sufficient generality in a large parameter space as far as VIV

is concerned. Thus, all one can hope for is the prediction of some aspects of VIV through the use of RANS (with

suitable turbulence models) and LES (with suitable subgrid models) under the safeguiding as well as safeguarding eyes

of high-quality experiments in suitable ranges of Reynolds number. Large-scale benchmark experiments at large

Reynolds numbers coupled with three-dimensional numerical simulations using RANS (employing several turbulence

models) and LES may allow one to develop industrial codes that may be used (after many calibrations) for design

purposes in small domains of the controlling parameters.

14. Conclusions and recommendations

The modest objective of this paper has been to review the VIVs in a few specific fundamental cases, as in 1979.

However, the difficulty of this review has been materially increased by the enormous growth of the size and number of

conferences and publications during the past 25 years. Those who desire a more comprehensive or utilitarian treatment

of VIV will find the references cited in the text and hundreds of other papers which appeared in the proceedings of

numerous conferences, to be most helpful. Obviously, much remains to be done, and we will record here only a few

cautious suggestions for consideration, rather than a competent glance into the future:

1. Carry out intricate experiments in the range of Re from about 3000 to 50 000 on the evolution of instability on

unsteady shear layers emanating from a rigid cylinder undergoing synchronized (free/forced) oscillations.

As noted in the Introduction, Re in our on-going experiments is kept constant at a specified value by maintaining U ;
D; L=D; k; z; rf and n constant and varying only m in rm ¼ 4m=ðpLD2Þ in small increments and hence fvac in

Vr ¼ U=fvacD or in fex=fvac: Subsequently, Re is changed to a new value for a new set of experiments with varying m:
The data will define a three-dimensional space showing A=D versus fex=fvac in each plane of constant Re. We intend to

continue this study with further data inter-comparisons and hope that the results will complement other contributions

dealing directly with the evolution of instability on unsteady shear layers and with the DNS, LES, or RANS simulations

of VIV at a given Re.

2. Obtain a new set of data (at Re>2� 104) for all values of SG (for rigid cylinders and cables with proper

end conditions) using refined methods, instrumentation, and proper damping (in air) partly for practical purposes

and partly, and most importantly, for determining the regions and the reasons where SG alone correlates the data and

the regions where m� and z operate as independent parameters. This will help to separate the regions of applicability of

the simple linear-motion analysis of VIV, from which the SG emanates, from the nonlinear range of the system

response.

3. Determine the character and magnitude of the self-limiting behavior of VIV of the cylinders and cables at large Re

and L=D as SG approaches zero.

4. Perform a whole new set of careful experiments with forced and self-excited cylinders at Re>20 000 in a facility

without free surface or surfactants (dissolvable or nondissolvable) to delineate the vortex shedding modes as a function

of fex=fst in the entire range of synchronization. It has already been emphasized a number of times that the Reynolds

number effects in all VIV experiments and numerical simulations remain an unresolved practical as well as fundamental

problem of major significance.

5. Perform a numerical simulation of the motion of two parallel shear layers subjected to sinusoidal

transverse motion in a uniform steady flow [à la Abernathy and Kronauer (1962)]. Even though one may not be
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able to connect all the links of the chain, the parts that can be connected might provide a better understanding of vortex

shedding modes.

6. Systematically investigate (at Re>20 000) the role of the amplitude modulations in free oscillations on the

differences between the free and forced oscillations. The rate of increase or decrease of the ambient velocity and the

intensity and integral length scale of turbulence must be quantified for each experiment.

7. Find the means (numerically or experimentally) to interfere with the coupling mechanisms between the near-wake

dynamics and the structure dynamics to change the phase difference.

8. Control the mode: all active and passive means to prevent the wake from shifting to a 2S mode.

9. Introduce additional frequencies into the motion of a flexible body (cable) to cancel some others and diffuse the

energy between various frequencies.

10. Produce cables and structures with smart materials [see, e.g., Zhang et al. (2003), Chopra (2002) and the

references cited therein] that increase their (material) damping when subjected to cyclic motion, stiffen their supports,

and reduce the correlation length (interfering with the boundary layers and shear layers).

11. Carry out extensive measurements and numerical simulations to enhance the understanding of the effects of body

proximity, vortex shedding from, and VIV of three-dimensional bodies.

12. Perform extensive measurements and numerical simulations to enhance the understanding and prediction of the

effect of ambient turbulence on shear layer instability, separation excursions, and VIV.

13. Find more elegant means to suppress VIV and to control (decrease) the correlation length throughout the cycle

(ropes are so noningenious).

14. Determine the mutual interaction of low frequency ocean waves, uniform (or sheared) collinear currents and VIV

at Re>20 000. ‘Young turbulence’, as defined by Evangelinos and Karniadakis (1999), at ReD1000 is commendable,

but not enough.

15. Make great strides to enhance the power of computers, numerical methods, and approximate models (the existing

as well as new ones) to enhance the prediction of VIV. There are, at present, large Re gaps between the computable,

measurable, and industrially significant ranges of VIV. Evangelinos et al. (2000) noted that the DNS simulations ‘‘are

currently prohibitively expensive to be used in the engineering design of VIV.’’ They have also suggested that ‘‘the

answer could be provided by dynamical systems modeling, given the low dimensionality of the wake.’’ Clearly, the

subject will remain exciting for generations to come not only because turbulence remains poorly understood but also

because it needs simulations at a level that could be used for industrial design explorations and ingenious VIV

suppression devices at any Re, in any environment. As noted earlier, a better way may be developing robust codes based

on various versions of RANS and LES, suitable turbulence models, and benchmark experiments at large Reynolds

numbers, and establishing code banks for validation and verification.
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